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Block 20 cont.

arbitrary rigid polyhedral moving object 4P' with three translational and three
rotational degrees of freedom, find a continuous, collisionlfree path taking "P"
from some initial configuration to a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm (at
a given resolution) for the full six degree of freedom Movers' problem. The al-
gorithm transforms the six degree of freedom planning problem into a point navigation
problem in a six-dimensional confIguration space (called C-Space). The C-Space
obstacles, which characterize the physically unachievable configurations, are
directly represented by six-diuensional manifolds whose boundaries are five .
dimensional C-surfaces. By characterizing these surfaces and their intersections,
collision-free paths may be found by the closure of three operators which
(I) slide along 5-dimensional level C-surfaces parallel to C-Space obstacles;
(ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and
(iii) jump between 6-dimensional obstacles.

Implementing the point navigation operators requires solving fundamental repre-
sentational and algorithmic questions: we will derive new structural properties

of the C-Space constraints and show how to construct and represent C-surfaces
and their intersection manifolds. A definition and new theoretical results
are presented for a six-dimensional C-Space extension of the generalized
Voronoi diagram; called the "C-Voronoi diagram", whose structure we relate to

the C-surface intersection manifolds. The representations and algorithms we
develop impact many geometric planning problems, and extend to Cartesian
manipulators with six degrees of freedom.

Ira

I.L

A._r'



Motion Planning with Six Degrees of Freedom

by

Bruce Randall Donald

0 Massachusetts Institute of Technology, May 1984

Accession Fýor

kNTIS GRA&I .. _
DTIC TAB
Unannounced 0
Justification

Dimtribution/ _______

Availab'ility Codes
lAvadi andd/or

Dist Special I

This report is a revised version of ch:apters 1-7 of "Local and Global Techniqutes
for Motion l'lanning," a thwski sabl)mittf.'d on May 10, 1984 to the Depaitment
of Electrical Engineering alid Computer Science at the Massachusetts Institetc of
Technology in partial fulrillment of' the re.qiremcnuts for the degree of Master of
Sciencc. Chapters 8 11 ;imay be obA ,ill(A se perately as A.l. Memo 736, "Rypothesizing
Channels _'/trozitgh Pree-Spacec in Solvizng thc Findpath P'robiem."



Motion Planning with Six Degrees of Freedom

by

Bruce Randall Donald

Abstract: The motion planning problem is of central importance to the fields
of robotics, spatial planning, and automated design. In robotics we are interested
in the automatic synthesis of robot motions, given high-level specifications of
tasks Lnd geometric models of the robot and obstacles. The Mover's problem
is to find a continuous, collision-free path for a moving object through an
environment containing obstacles. We present an implermented algorithln for the
classical formulation of the three-dimensional Movers' problem: Given an arbitrary
rigid polyhedral moving object P with three translational and three rotational
degrees of freedom, find a continuous, collision-free path taking P from some initial
configuration t 0 a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm
(at a given resolution) for the full six degree of freedom Movers' problem. The
algorithm transforms the six degree of freedom planning problem into a point
navigation problem in a six-dimensional configuration space (called C-Spa-,e). The
C-Space obstacics, which characterize the physically unachievable configurations;
are directly represented by six-dimensional manifolds whose boundaries are five I-

dimensional C-surfaces. By characterizing these surfaces and their intersections, -

collision-free paths may be found by the closure of three operators which (i)
slide along 5-dimensional level C-surfaces parallel to C-Space obstacles; (ii) slide
along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between
G-dimensional obstacles.

Implementing the point navigation operators requires solving fundamental
representational and algorithmic questions: we will derive new structural properties
of the C-Space coistraints and show how to construct and represent C-surfaces and
their intersection manifolds. A definition and new theoretical results arc presented
for a six-dimensional C-Space extension of the generalized Voronoi diagram, called
the C-Voronoi diagram, whose structure we relate to the C-surface intersection
manifolds. The representations and algorithms we develop impact many geometric v

planning problems, and extend to Cartesian manipulatois with six degrees of Ifreedom.
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Geometric P lanning Problems

Introduction and Statement of the Problem

The motion planning problem is of central importance to the fields of robotics,

sa~timal lnigadattia dytesign In robotticsin~ give are-lv pc iictitensoftesk indth

spato.aia plannhingi and auoae esg.I obot atu, jiehg-evicspweciiarciontrste ifuknd the l

geomectric miodels of the robot and obstacles. The problem is to find a continuious,

collision-free path for a movinig object through an environment conltaining obstacles;

hience it has also been called the Find-Path or Piauno Movers' problem. In its mnost

general formulation the oblject can have an arbitrary number of hinges and joints,

anid in soinc cases coordinated motion planning for multiple objects has been

considered. We will confine ourselves to thec classical formulation of the Movers'

problem: Given an arbitrary rigid polyhludral moving object P', find a continuous, N

collision-freec path taking P troin somne initial conmfiguration to a desired goal

configuration. We are particularly interested in the 3-dimiensional Mlovers' problemn,

for an object Nvith 3 translational arid .3 rotational degrees of freedom. 'This thesis

describes the first known iinplenlentation of a complete algorithmn (at a given

resolution) for time full 6 degree of frccdomm Movers' problem.

1.1. W~hat. are Geonmet~ric. Planning P~rob~lems?

Our work has imipact. on z, class of geometric planning problemis. In robotics

we -irc typically interested ixi miotion planning for a mobile robot or nianiplulator.

7



Figure 1.1. An example of a solution path for the classical Mover's problem with six degrees
of freedom. This illustration is a "time-lapse" picture of a path found by our planner for a \' x
"aminer-shaped object. In all our exaniples, the workspace is bounled by a box (which is not s. -

shown). This solution path requires use of all three rotational degrecs of freedom. -

In Computer-Aide" Design (CAD), the problem of automated structural design

for n structucal members is also an instance of the most general form of the

Mover's problem. The problem of determining whether an object can be assembled

as designed, and of generating an assembly plan if it can, is also in this class.

Examples of geometric planning problems include:

(i) The Find-Path or Movcra'problem is to find continuous, collision-free path

for one or more moving objects in the presence of obstacles. Find-path problems

fall into two broad categories: single-body and multiple-body motion planning

problems. In the classical Movers' problem, a single rigid polyhedral object must

be moved through a workspace containing polyhedrai obstacles. For tile linked V
or hinged body Movers' problem, a set of moving objects connected via joints or

linkages must be moved. An industrial robot arm is a typical example of such an

87



Figure 1.2. A different view or thc solution pa'h for the hanimer exxitnpl.', wit Ow obstacles T1

"~tranvparent" tW allow us Wo view '.hec rotatioins blwtt:r.

object. In the COOTdinated planning problem, a number of independent (i.e., not

necessarily linked) objects must be move~d, An algcrithiri for invld'lep body motion K4

planning must ensure that th-e moving objects collide neither with the. walls nor

with each other. .V
0

(ii) The find-space problem is to find a collision-Frce placement for one or kk

more. objects in a field of obstacles, Bly analogy with the find-path problem, we

can speak of thc classical, linked-body, a~nd coordinated find-space problems. In

cornpu %cr- aided design and automtated dcsign, the find-space problem is typically

subject to additional geomnetric constraints. ILozano-PNrez (1983) grouped find-path

and find-space algorithms together as the spatial planning problems.

(iich fine- inotiton prob lcm entailIs inotion- plann inrg alon gobstLacle su rfaces,

typically while maintaining some applied force. Collision-free paths arnd placements

avoid obstacles: however, for many tasks in robotics and in automated design, it ,

N "



1i;uc1.3. Application Exatale~|l.: Plannling for an industrial robot a•rm, with! six dv'grecs of

fre"'doi is an exainple or the I;nke(1-body rnovers' problein. (Figure courtesy or Rodney Brooks).

N is necessary to plan motions and placements in contact with obstacle surfaces. For

example, consider the tasks of weldhixg, insertion, and assembly in robotics. These

tasks require compliant mot~ions, entailing consideration of additional physical --..
constraints such as friction, kinematics, and force control. Htowever) the compliant ••

m oetion ,,,,m-- " . ...nin p rob ... . . . . . ...•lem h as a stron g geo m etric fl ayor and its solution req uires
the tools of spatial planning (see Mason (1981), Erdmnann (1984)). 1

t/

tip

LLI

(iv) Recently, researchers have begun to consider motion planning with,

uncertainty (Miason (1981), Brooks (1982), Lozano-PNrez, Mason, and Taylor (1983), :

l'3rdmann (198.4)). Broadly speaking, uncertainty may arise from inaccuracy in..

object models, sensors, or control. Motion planning with uncertainty also presumes

algorithmns and representations from spatial planning.

As we can see, all geometric planning problems contain components of the

spatial planning problem, especially if the underlying geometries are the same. In

I.l

% N.
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Figitre 1.4- Example from computer-aided design: Automatically generated flat-plate structure
from Donald (19831). Dlow can we gcncratc structural patterns s~ubject to the constraints or the
huilding envelope and mechanical cole?

particular, for high-dimensional configuration spaces, the theoretical analyses of

Mason (1981), Lozano-PNrez, Mason, and Taylor (1983), and Erdmann (1984) all

presume geometric results which are dcrived in this thesis.

This work impacts all geometric planning problems. To illustrate the theoretical

results, we address one particular problem, namely the classical Movers' problem

with six degrees of freedom. Our algorithms immediately generalize to applications

involving gross-motion and fine-motion planning for Cartesian manipulators with

six degrees of freedom.

q
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goa I

Figure 1.5. A find-path problem for an b-shaped object. The L-shapcd object is shown amidat,.i
obsta•kde in the start and goa-d configurations.

[64]

Figure 1.13. Solution Path 1, frame 64 (final configuratLion). %
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C.4

Figure 1.6, Solution Pa~h 1i, frames~ 1 9: A difickult oi-ution paith for thie L-~ishapecJ object.
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Figure 1.7. SoiuLtofl Patth I, frranc.• 10-18
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Figure 1.8. SoluLi•n iatlh 1, franIce 19 27
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Figure 1.9. Solution Path 1, r'ani 28 36
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Figure 1.10. Solution la'At I, frame5s 37 45
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Figure 1.11. Sollution PaLh 1, framea, 46 54
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Figure 1,12. Solul inn IPau, I, rraim- 55 63
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4A.

Figure 1.14. A diIfereti, view of the 'ae '•o"lution path, showing how the ],-,1haped object must
rotte, to a..Li:al ',he fill:tl position. TlE. first qix rrarmue are not tshowrn, since the mnoving is not
visibic from thim. pcr.spective. Solution Path I (view 2); rrameiis 7 15 4
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Figur 1.1. SohLion I•, (vw•w 2); f'rarne. 18-24
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Figurc 1.16. Sulution Plath I (view 2); frames 25 33
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Figure 1.17. Solution PIath I (view 2); frames 34 -42
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Figure 1.19. Solution Pathi I (view 2); rrarnes 52 80
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Figure 1.21. A detail of the path for the L-Shaped example. The detail Li in "time-lapse" format,
and shows a complex double rotation icar the goal configuration.

Examples of "classical" find-path problems solved by our planner may be found

throughout thii chap'er, and also at the end of chapter 2 (section 2.4, "Examples

of the Local Experts in Use"). See fig. 1.5-21, 1.22-28, and 2.7-21. In general,

geometric planning problems with niore than three degrees of freedom have proven

extremely difficult to solve. We believe that in part, this difflculty has been due

to the unresolved issues in the mathematics of spatial planning. By solving these

problems for the six degree of freedom case, and illustrating the results for the

find-path problem (which holds considerable intrinsic interest), we hope to provide

a geometric foundation which will make all geometric planniing problems feasible.

.s.27



start

Figuc 1.22. (3 Views or the "Puzzle Problem"). In 1h6s find-path problr-m, the L-shaped object
rnml. be moved around the diagonally-placed obstacle. Here the L-shaped object is shown in the
iniLial and goal configmations.

1.2. A Simple Example: How to Find a Path for a Point Amidst 3-D

Polyhedral Obstacles

We will begin by discussing an algorithm for navigating a single point amidst

polyhedral obstacles in three-dimension Euclidean space W?3. We then review the

configuration space transformation of Lozano-PNrez (1083), which transforms the

problem of reasoning about the motion of a polyhedral object to reasoning about a.

single point in configuration space. If the configuration space is isomorphic to R',

then the point navigation algorithtm can be applied directly to find collision free

paths. In this thesis we will generalize the point navigation algorithm to work in

the configuration space for a three dimensional polyhedral object with six degrees

of freedom.

The six degree of freedom planner is based on the following analogy: suppose

Z y
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Figure 1.25. Puzzle-Probh,,m, frames (1-6), view 2
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we wish to find a path for a point in pt:3 avoiding collisions with polyhedral

obstacles, where each polyhedron is modeled as the intersection of a finite number

of half-spaces of qZ3. Onc solution might be to move until the point COllies in

contact with a polyhedron, and then to move around the obstacle by traversing the

edge-graph on its boundary. (Refer to figure 1.39, ignoring the caption for now).

Each arc in the edge-graph is the intersection of two surfaces bounding half-spaces.

Even if the polyhedra are allowed to overlap, the technique will still work since their

intersections have the same structure. Naturally, we will also need some technique

for jumping from one obstacle to another.

To summarize, we can find a collision-free path for a point aLiidst obstacle

polyhedra in R 3 through the closure of three operators:

The Point Navigation Operators

Operator (i) slides along the 1-dimensional edges, which lie in the intersections
of the obstacle planes;
Operator (ii) slides along the two dimensional obstacle planes, which contain
faces of the obstacle polyhedra;
Operator (iii) jumps from one 3-dimensional obstacle to another.

We now review the configuration space transformation. Using this transfor-

mation in its . , n•pl.st form, th"e find path probM-n in threce dinicnsions without

rotations is reduced to the point navigation problem amidst polyhedral obstacles.

1.3. Configuration Space

The configuration of a moving object is a vector or parameters representing

its combined translation and orientation, relative to a specified coordinate system.

For the classical Movers' problem iu the plane, a typical configuration

(x, Y,0) %!

3%5



represents a displacement (translation) of (z,y), and a rotation by 0. (For example,

imagine a polygon displaced by (x. y), and rotated by 0 about one of its vertices).

For the six degree of freedom classical Movers' problem, a typical configuration

X =(X, Y, z,

represents a displacement (translation) of (., y, z), and a three dimensional rotation

k(O). The three dimensional rotation group is a three parameter family; typical

representations of rotations include luler angles, (Syrnon (1971)), spherical angles,

and quaternions (Hamilton (1969)). For example, if the Euler angles e = (0,b0,0,)

are emp)loyed, then they determine a 3 by 3 rotation matrix which functions as

£(O) in the rotation group. It is convenient to identify the rotation operator with

its parameterization, that is, to express X as

X -

Using configuration space, reasoning about the motion of a complicated three-

dimensional body amongst obstacles may be transformed into reasoning about

a point in a six dimensional configuration space. The transformation described

by Lozano-P6rez (1983) entails "shrinking" the moving object to a point, and

correspondingly "growing" the obstacles. In principle, the point may then be

navigated around the grown obstacles by means of the point navigation operators

(above).r

In this thesis, the point navigation operators will be gcneralizcd to the
six-dimensional configuration space of the classical Movers' problem.

In order to present our algorithm for planning in C-Space, it is necessary to

review the basics. We present an introduction to representations in conrfiguration
space at two levels: first, we present an intuitive discussion. Next, we present a

more detailed, slightly more mathemtatically-oriented exposition. For the sake of 4

readability, there is some redundancy iii the sections. Those who are encountering

configuration space for the first time may wish to postpone reading the latter

section for now.
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Figure 1.29. Thcse figures show an obLtacle polygon B and a moving polygon A. A must be

moved around B to the goal configuiration.

1.3.1. Representations in Configuration Space: An Intuitive Treatment V1
Figure 1.29 is an example of the classical Movers' problem in two dimensions,

-W A 0 t. . nh;ar, w,; ah must, be moved fronm the start

configuration to the goal configuration, around an obstacle polygon B. The start Ilk

and goal configurations may be expressed as two dimensional vectors of the form

(z, y) which represent the displacement of a vertex vj on A from a fixed coordinate

frame. The displa.cement is a rigid translati, of the polygon A. The C-Space of

this Movers' problem is the space of two 4imensional translations; which is the

same as the Cartesian plane. Lozano-PNrez (1983) demonstrated a transformation

which shrinks A to the vertex vj, while inversely growing B. The grown obstacle for

B is a C-Space obstacle called CO(B). and is shown in figure 1.31. (We will discuss

the details of this transformation later). The problem of moving the polygon A

from the start to the goal is transformed into the problem of navigating the point
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vj around the C-Space obstxcle shcztn in figurt 1.31.

Both A and 1) are convex; noii-con-ex objccts "re represented by ostrlapping

uni,.Tn of convex polyhedra. The C-Spa.e obstacle CO(D) is co.structed by

consideri,,g all feasible interactions of the edges arid vertices of A and B. Each such

interaction generatcb a constra-iri which is rm.nifcst as an edge of (7O(B). We say

that au interaction between a vertex of A and ýmn edge of .3, or beLween .n edge oF

A and a vertex of B, is feasible if there is some pute tranmiation which can bring

the vertex :rnd edgc in contact without causing A and 2' to cverLap. For exampl.,

the sdt of al' possible intei-actions of A and 3 is lhe umioi of the two cartesiall
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Pigire 1.31. CO(B), the grown obstacle for B in C-Space. The vertex v, must be iiavigated -,
a,'ouiid CO(B).

V , v2 xV3 ) , X {,e 2 ', 4 }. C3,,,C4'

However, at the depicted orientation of A, only these interactions are feasible:

1 ,•,•), (VI, CD, (e , VD•, (V,2, eD, (e2, v), (,,3, e'), (e3, ,V')

It is easy to visualize the translation that. will bring any of these pairs into contact.

Furthormorc, note that (for example), no translation can bring v3 in contact with

C2 ,

Now imagine that A is allowed to rotate about vt. At different orientations,

there will be different sets of feasible contacts. We say that the constraints associated

with feasible contacts are applicable constraints. It should be clear that at any given

39 ~~
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Figure 1.32. CO(B) can be represented aa Lhe interscction ot 7 balf-ispaes, whose boundaries

contain edges bounding CO(B).

orientation, only certain constraints will be applicable. The orientations for which a

given constraint is applicable form its applicaoility region. The applicability regions

for each constraint in this problem are angular sectors of the form [01 <. 0 < 0.J.

This simply ineaius that thlere ,xists a 'ragc of j,..n........ n .r.ar con ta.t

is feasible. This range of angles may be geometrically visualized as a sector of a

circle.

When A is allowed to rotate, the geometry of CO(B) changes as 0 varies, and

as the set of applicable constraints changes. As the edges and vertices of A rotate

about vi, the constraints they generate sweep out ruled surfaces which bound

CO(B) in a three dimensional C-Space. (The C-Space is three dimensional, since

A now has three degrees of frcedJrn: x, y, and 0). At any fixed orientation 00, an W

z-y slice of CO(B) is a polygon, called slice(CO(B), 0o). Figure 1.31 shows such a

slice at the depicted orientation of A. With each edge of slice(CO(D), 0) there is an
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associated half-plane containing slice(CO(B), 0), whose boundary contains the edge

(see figure 1.32). The intersection of these half-planes is exactly slice(CO(fB), 0).

As 0 changes, different half-planes are used to construct slice(CO(B), 0). By (1)

deriving the line equation of the boundary of these half-planes in terms of the

orientation 0, and (2) by determining the applicability region for each half-plane

constraint, we can characterize slices of the C-Spacc obstacle slicc(CO(D), 0) as 0

changes. Thus we can characterize the three dimensional C-Space obstacle CO(B).

This representation may be used to develop planning algorithms for the Movers'

problem with two translational and one rotational degrees of' freedom (see Brooks

and Lozano-Perez (1983)).

In this thesis we develop such a representation for the six degree of freedom

Movers' problem. There are several problems which must be solved. Because

the structure of the rotation group is more complicated in three dimensions,

the applicability regions for constraints in a six degree of freedom C-Space are

geometrically much more complicated. While in t,we dimension- the applicability

regions may be visualized as sectors on a circle, in three dimensions they are

complicated three dimensional manifolds on the projective 3-sphere. It is important

to characterize these regions, since they specify where a constraint is applicable.

We will discuss some of the other problems presently.

Generalizing the Point Navigation Operators Requires Solving

Representational Questions

In order to generalize the point navigation operators to the C-Space of the

classical Movers' problem, we must be able to characterize the surfaces of C-Space

obstacles, and the intersections of these surfaces, [he first two operators, then, must

slide along the C-surfaces and their intersections. In the next section, we discuss some . . -•

of the representational issues involved in developing such operator.s. For example,

when rotations are allowed, the C-.surfaces are curved. In the six-dimiensional space

of the cla.ssical Movers' problem, each C-surface is a five-dimensional submanifold of

C-Space, and the intersection of two such surfaces i.. i four-dimensional mnani'old. I.
Thus it, is possible to slide along such an intersection with four degrees of freedom.
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1.3.2. Representations in Configuration Space: A More Formal Treatment

In this seztion, we present a somewhat more abstract formulation of

representational issues in C-Space. Some readers may wish to postpone reading this

section until later. We will proceed as follows: fiist, we will outline an important

representational question which must be solved in this thesis. Next, we discuss

how to represent volumes (such as C-Space obstacles) in C-Space. In the course

of this discussion, several terms will be defined in context by means of intuitive

descriptions. At the end or this section, under the heading Working Definitions, we

will summarize and formalize the definitions to the extent that will be required in

chapters 1 and 2.

The Domain Question

Until now, geometric planning problems with more than three degrees of

freedom have proved resistant to solution.' In this thesis we provide such an

algorithm for find-path with six degrees of freedom (the classical Movers' problem).

The rcsistance or these problems has iargely been due to unresoived irialientatical

issues and questions relating to the structure of configuration space and to the nature

of C-Space constrailits, (although for fine-motion and planning with uncertainty

there are of course additional issues).

One fundamental theoretical problem for high-dimension al configuration spaces

may be stated as follows: in a configuration space C with rotations, each C-Space

obstacle may be represented by the intersection of a finite number of half-spaces.

Each half-space, in turn, is defined by a real-valued C-function on C-Space. For

example, the half-space might be the set of configurations where the C-functiop

is negative. However, each C-function is a partial function on C, whose domain

is a complicated region in C-Space. This greatly complicates the representation

for C-Space obstacles and C-surfaces (see figure 1.36). Moreover, until now the

domains of the C-functions were unknown for all but the one-dimensional rotation

group. One of our first tasks will be to derive the domains of all C-functions for .64

the cla-isical Movers' problem with six degrees of freedom.

'I Iowcwvr, pr,'ýviouM work has provided an cxisti'ncc proof of a p o lynomial tivre a;Igorithin for

ccrtatrr .4pat.i;al planning ,orobhleims. In adlition, there are approximate(, tlgorithnms for Somie o[l thvse

problit ,s. Sei" our revivjw ol1 previous work.
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There are several related problems, for which we also present solutions. This

allows us to construct a complete geometric representation for the con fign ration space

of the classical Movers' problem with six degrees of freedom. This representation

impacts all the geometric planning problems we have discussed, and extends

naturally to Cartesian Manipulators.

Representing Volumes in Configuration Space

The dimensionality of configuration space is the number of degrees of freedom

in tie parameter space, i.e., the number of degrees of freedom available to

the moving object(s). Thus the classical Mover's problem in the plane has two

translational and one rotational degrees of freedom, while in three dimensions it

has three translational and three rotational degrees of freedom. The configuration

spaces for these problems are three and six dimensional manifolds, respectively.

As the number of degrees of freedom increases, a geometric planning problem

becomes harder. There arc several reasons for this. First of all, when rotations arc

allowed, configuration space ccasc. to be E3uclidcan, and the C-6urfaces become

curved. Furthcrmorc, the non-commutativity and multiple-connectedness of the

three-dimensional rotation group are classical difficult issues in mathematics. In

addition, it can be shown that the computational complexity of spatial planning

grows exponentially with the dimensionality of the C-Space.

A fundamental issue for geometric planning algorithms is: how should C-Space

obstacles and surfaces be represented and computed?

A volume in a configuration space C may be represented by the intersection of -N

a finite number of half-spaces (see figure 1.33). Each half-space may be defined via

some smooth, real-valued function function on C,

f•:C --' •. '-

For example, (fig. 1.34) suppose fi(x, V) ax + by -- c, for soine constants a, b,
and c. The kernel of f is the line where f(x, y) = 0. The halfspace h- is the

portion of the plane where f(x,y) is negative. C-functions such as f1 arise in the

two dimensional Movers' problem, at a fixed orientation.
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Figutre 1.33. The region CO is the intersection of the half-spacce h7, h-, h-, and h-.

In general, the (closed) half-space hi- is the set of all points in C where fj is

negative-valued or zero:

h= { v (zj ikv() L o }.

The common intersection of a number of such half-spaces can yield a volume in

C. Lozano-P~rez (1983) showed how C-Space obstacles can be modeled in this

manner, and gave the form of the functions fi. Note that each C-surface lies

within the kernel of some constraint fi. Fine-motion strategies and algorithms for

planning with uncertainty need to compute the normals and tangent spaces to

these C-surfaces. The normal can usually be derived from the gradient Vf, (this

requires placing an appropriate Riemannian metric on the tangent space). When

& real-valued function fi on configuration space is used to describe constraints in
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Figure 1.34. Example or a C-function fi in the plane.

that C-Space, (i.e., C-Space obstacles), we call it a C-function. The form and

interpretation of C-furnctions are presented later.
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Figure 1.35. Illumtration of the clamrical Mover's problem in three dinensions. Bi is an obstacle,

and A is an object which mnu.t Iw m.oved aroundc IP. A.,^, shows A in thei starL configuraLion,
anid Ago, showt A in the desircl goal config, raLion. C is the po)lyhe!dron which is the U-Space
oh.l;t;clc frwt IB fur A at oriclilatiOln 01. At orientalioni 0 ', Lhe" C-Spare obstacle from B? is a
dilTereLnt polyheCdroi, viltich we .how m. C'.
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Example: (See figure 1.35). Con:ider the Movers' problem for a three dimensional

polyhedron A which can translate but not rotate amidst polyhedral obstacles. The

configuration space for A is a three-dimensional vector space of translations, which

it is convenient to identify with Vl?. Each constraint fi will be linear on 40, and

the kernel of fi is a plane. Each such plane bounds a C-Space obstacle (such as C

or C' in figure 1.35). The C-Space obstacles are possibly overlapping polyhedra in

p3. The find-path problem in the transformed space is that of navigating a point

past the union of these C-Space polyhedra (see figure 1.39).

In this formulation there is a fundamental underlying assumption: fi is a total

function on C, that is, the domain of fi is all of C. In the example this is not a

problem, since the domain of each linear C-function is the entire space. A function

whose domain is a subset of C is called a partial function on C. When rotations are

allowed, C-functions become partial functions.

7-



Figure 1.36. The functions fi, f,, and fi are used to describe Lte hair-spaces h , h-, and

hk . If all functionis are total functionm on tile plane, theu the intersection of thle corresponding

hall-spaces will be Olht the rectangloid region R. |lowever, sippose that fI is a partial fuunction,

who.-Av doinait is rctricti'd to the half-.pace where y it9 iOmitive. We say that fI im nat applicablc

below the linet' y = 0. U'urdhicrnorc, we ZLim~inme that poin.• ouLshdeO the domain of A are within

h-. ill tliis ca-ie, the i,t.,.rscictuio 1.- n h." fl hi" is triangloid region T.
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Figure 1.37. The two- diimci•sional classical Movers' problem: An pbstacle polygon D and a moving
polygon A. A is showni at, a particular orientation, 61.

Why do C-Space constraints become partial functions when rotations are

introduced? Consider the classical find-path problem in two dimensions, for a

moving polygon A which can translate and rotate in the plane (see figure 1.37). A

configuration of A may be represented by three parameters, (x, y, 0). The surfaces of

the C-Space obstacle for B arise from each of the feasible contacts (or interactions)

between the edges and vertices of A and B. Thus the constraint functions (which

we have been calling fi) are defined by considering pairwise interactions of edges

and vertices of A with vertices and edges of B. Every such pair such as e. and vb

will generate a smooth, real-valued C-function f,,b on configuration space. 2 Each

constraint is designed such that their conjunction enforces a disjointness criterion j
for A and B. However, not all interactions are possible at any given orientation.

For example, at the depicted orientation 01 of A, edge e2 can interact with vertex

V, but edge el cannot: at orientation O0, no translation can bring el in contact
2 F'or the forin of the G-fnrctiors, sce chaplcrs 3 and 4.
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with v while maintaining ',he disjointness of the interiors of A and B. We say the

associated C-function f., is not applicable at orientation 01. In other words, no

configuration

(X J0)CW X 101

is in the domain of , Each constraint fctb is applicable only at certain

orientations, and hence each can be considered a partial function on the C-Space. 3

In three dimensions (see figures 1.35 and 1.39), the surfaces of the C-Space

obstacle for B arise from each of the feasible contacts between the vertices, edges,

and faces of A and B. By analogy with figure 1.37, it is clear that not all of these

interactions are feasible at any given orientation. Thus the C-functions describing

C-surfaces for spatial planning with six degrees of freedom must also be partial

functions.

Working Definitions: Review and Summary

'We now summarize and formalize the key definitions and concepts required in

this chapter and the next:

Configuration Space: (Formal definition) Configuration space is the product

space of the space of translations and the space of' rotations for an object. In three

dimensions, the space of translations is Euclidean 3-space 9Z3 and the space of

rotations is the 3-dimensional rotation group or Special Orthogonal Group, SO(3).

SO(3) is isomorphic to the intersection of the Special Linear Group (the set of

all real 3 X 3 matrices with determinant 1) and the Orthogonal Group (which

may be thought of as the set of matrices with orthonorinal rows and columns).

The orthonormality of rows and of columns are equivalent conditions. SO(3) is

isomorphic to p 3, the 3-sphere S 3 with opposite points identified. (p 3 is also known

as the projective S-sphere). S3 is isomorphic the group of unit quaternions. For the

classical Movers' problein we will employ configuration space, X "SO(3). We will

denote the classical Movers' Problem with three translational and three rotational

".S9e l1,ooks .and lozaIo- I''rv"z (1983) For a diisciision of the domains of C-fmiction,• for the two

(ini ens ion,:i lind- palhli p rob ,ri withb roLatiow.t.
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degrees of freedom as 6DOF. In practice, we will represent rotations as members

of a three-parameter family (for example, Euler Angles), but we must keep in mind

that they parametcrize an isometry and that V: X SO(3) is not a vector space.

If the Euler angles (0,0, b) are employed to represent the orientation of a rigid

polyhedral body, a typical configuration X in W X SO(3) has the form

X = (X P? O, 01

We will sometimes adopt the notation

X =(),%

where r denotes a three-dimensional translation vector, and e some three

dimensional rotation. This second notation is independent of the particular

representation chosen for rotations; the first, isn't. If Euler angles are employed, we

may think of 0 as the "vector" of Euler angles, (k, 0, 0).

C-Space Obstacle: (Informal definition) Configuiratien space obstacles are

(possibly overlapping) six dimensional manifolds (with boundary) which correspond

to sets of configurations that would cause collisions of the moving object with real

space obstacles.

Free space: The free space is that subset of C-Space which lies within no

C-Space obstacle. The free space will be denoted F.

Applicability Set: (Informal definition) Refer to tigurcs 1.29-32 and 1.33-38, and

recall that C-Space obstacles are represented by the intersection of a finite number

of half-spaces. (To be formal we should call them half hypcrspaces). The boundary -.

of each half-space is a C-surface, and cClitains a boundary patch of' the C-Space

obstacle. Each C-surface S inmiy be expressed as dhe kernel of a real-valued function

f on C-Space. The C-function f is negative on the obstacle side of the half-space

C-Space obstacle, and positive on the other halr. In the literature C-functions have

been called constraints, since they express constraints on the possible motions for %0
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an object. A. surface parallel to S is called a level C-surface, and represents the set

of configurations where f has a certain fixed value. Tfhis value is termned the level

of the level C-surface. The boundary of the C-Space obstacle is a special case of

level C-*sur face, where the level is zero. We have seen that at any given orientation,

only certain C-functions (and their associated C-surfaces) are applicable. T1his is

because onily certain contacts are feasible between the faces, edges, and vertices

which generate the C-functions. We call this set of C-fuactions the applicability set.

For example, in 1.29-32, at the depicted orieutation the applicability set is

(Actually, the applicability set is the set of C-functions generated by these

vertex/edge and edge/vertex pairs, but since there is a one-to-one correspondence

between the generator pairs and the C-functions, we can write it this way). In later

ch-.ýpters, we will dermonst~rate algorithins for computing the appiicability set, and

for decomposing rotat~ou space into 2gions where the applicability set is invariant.'%v

JRedundant and Non-redundant Constraints: (Informal definition). If a contfig-

uration X is in~ free Fpace, the set of constraints whmich is (locally) relevant to Motion

planning from X is a subset of the applicable, positive-valued C-functions at X.

However, the value of a C-function does more than merely indicate which side of aA

C-surface X is on. A C-function's value represents the translational di-stance to that

.4surface. Tiflus, 'C-functions providoe a collcct'ion 0I pseuuo-inuriercs oi L- Space. Using

these metrics, it is possible to order C-surfaces by their closeness to a configuration

X (simiply sort the C-functions on their value at X). We say that a C-surface is

redundant if it is subsumed by a necarer, interveninig constraint. Ift figur 1.38, for

example, f and g aie niio-redundant congtraints at X, but h is redundant since it

is subsumed by f.It is useful to determine the set of noti-redundant. constraints at

A' siace this is the. -mallest set. of constraints that are locally relevant, to motion v*

platinrng. We proviuc a formial definition of redundancy in chapter 3.

)?obol, Moving Object, and Pic.no: All of these termis have been employed in

the literature to refer to the moving object for which a collision- free padh inoti3t
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Figure 1.38. h is a redundanit w~nstraint.

be found. Our moving object is modeled as the possibly overlapping union of a ,

finite set of convex polyhedra,. T]he union is rigid, but not necessarily convex or

connected, The moving object bas three translational axid t~hre-e rotation degrees of•"

fedm To avoid monotony, we may employ the term robot tu refer to the moving •.

e'Pil- T e t~r-(,rE ,,z .... ; f;,, arl, ;q "-#r I".' t}•f ac C•• .... , .:t . ..t

straightforwardly to Cartesian xmaipu•-.t,:.,-.ýn.
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The Research Agenda of this Thesis

A Brief Outline

I. Computational Theory

Paths can be found in C-Space by the closure of three operators:
(i) slides along I- to 4-dimensional intersections of level C-surfaces;
(ii) slides along 5-dimiensional level C-surfaces;
(iii) jumps between 6-dimensional obstacles.

III Representation and Algorithm

Scarch Algorithm Employing the Three Operators .]______

Solve the Intersection Problems.
Develop a represention for the intersection manifolds.

Solve open questions about the structure of 6DOF constrai .nts. Derive a nd]
repr -scs n s tructural properties of thc constraint s, for cxamplc, thc domains of
defining partial functions. Develop decompositioa algorithms.
Bl1. Implementation

Implement the 6DOF planner.

f V. New Theoretical Results -

The structure of 6DOF constraints- Theorems on the domains and domain
toplogy o..f h 1efirnrg parltýdI Frnet.innqs

Theorems on the applicability decomposition.
The C-Voronoi Diagram (CVD).
The Equivalence Theorem for intersection manifolds and the CVD.-,
Criteria for designing/integrating local and global planning algorithms.
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1.3.3. Generalizing the Point Navigation Operators

Consider a thiee-dimensional configuration space containing smooth, curved

C-Space obstacles. Observe that the point navigation operators will work even if

the surfaces are curved and complicated, as long as we can find 4heir intersections.

For the two-dimensional Mover's problem (for a polygon allowed to rotate and

translate in the plane), we employ a configuration space 9?2 X S'. WR2 is the space of

two dimensional translations, and S' is the unit circle, on which one-dimensional

rotations may be represented. C-functions are of the form f, : R2 X S' -+ R and

are valid within some sector Ai of S1. A C-surface is the set of configurations

where fi is zero. Although these C-functions are complicated expressions containing

trigonometric terms of the form xcosO and ysinO, it is possible to solve two

such C-surfaces simultaneously to obtain an intersection curve in ýZ2 X S1 which

is parametric in 0 (these intersection manifolds are derived in chapter 4). The

analogy to navigating a point through a polyhedral environment should now become

clear: the faces of the polyhedra correspond to C-surfaces in R2 X S' and the

edge-graphs to the graph of C-surface intersections. By searching the graph of

C-surfacc intersections we can find a path in configuration space, if one exists. '-V"

Planning in a Six Dimensional C-Space

Our planner for a six dimensional C-Space is based on the idea of moving along

the intersections of level C-surfaces in free space, parallel to the boundaries of C-

Space obstacles. In the example above, the coincidence between the dimiensionality

of configuration space and Euclidean space was serendipitous: edges on polyhedra

corresponded to curves in t2 X S, and faces to 2-dimensional surfaces. Hlowever, in

a six dimensional C-Space, the C-surfaces are 5-dimensional and their intersections

are 4-dimensional sub-manifolds. Intuitively this means that the set of possible

motions while complying with two constraints is a four-parameter family.

Our idea is as follows: Suppose we could slide along C-surfaces (see figure 1.39).

In addition, suppose we could intersect C-surfaces to construct a lower dimensional

manifold in C-Space which contained paths along (or around) the boundary of

C-Space obstacles. By sliding along C-surfaces, and by slihing along the intersection

of C-surfaces, we should be able to devise an algorithm which can circumnavigate

•o... _•
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Figure 1.39. We can represent the configuration of a polyhedron A by a pair, (T,O), where 7 is

a translation of A and 0 is a rotation of A. The problem of moving A froin configuration (r., 0 1 )
to (r0 , •2 ) is trarisformcd to the problem of navigating a configuration poisTt, r, past C, which

is the C-Space obstacle due to 13. S1 and S 2 are C-surfaces bounding C. The configurations ci

lic on the bounds y of C, whilc d, is in free-space. Two trajectories around B3 are shown. Note

that the path segments (Ce6,(r,,02)) and (di,(r, 2)) must also include a rotation. (The actual

reference point is at the centroid of A, but for the purposes of exposition, wc hare placed it at a

vertex as shown).

C-Space obstacles. (Of course, we also need a way to plan motions which "jump"

from one obstacle to another).

Example. Figure 1.39 shows how such a planning algorithm might work. The

planner moves through free-space from (re, 01) until it strikes a C-surface SI at

cl. From cl a path is found towards c2 sliding along the C-surface S1. We say the

planner slides along SI to C2. Configuration c2 lies on an intersection manifold of

the C-surfaces SI and S2. The path segment (c2, c3) slides along this intersection

manifold, which lies on the boundary of C. A path (c 2 ,C3 ,c.iC5,c 6 ) is planned along

the graph of intersection manifolds on the boundary of C. From c6 we leave the

boundary of C, and translate and rotate through free-space '%o (r., 0 2). This path



is an idealized example of planning along C-surfaces and intersection manifolds of

C-surfaces. The implemented planner finds a path similar to ((rW, E1), di, (r., 02))

(see chapter 2). The path segment ((r,, 0), di) is parallel to the C-surface S1 , and

we say that it slides along a level C-surface for S1 . The path segment (d i , (r., 09))

is along a level C-surface for S2 . These level C-surfaces intersect along a manifold

in free-space containing di (imiagine extending the faces S1 arid S 2 beyond the

boundary of C until they intersect).

We will derive the necessary mathematical theory and tools relating to C-

surfaces and their intersection manifolds, and present algorithms for moving and

planning paths in C-Space. Some of the issues we will address include:

(i) What is an appropriate representation for constraints in a six dimensional
C-Space?

(ii) How do we plan motions using constraints whose domains change with the
motions?

(iii) How can trajectories in C-Space be intersected with C-surfaces whose domains
change along the trajectory?

(iv) Hlow can intersection manifolds be constructed in C-Space?

(v) How are motions planned which slide along C-surfaces and intersection manifolds?

It is useful to develop a terminology for evaluating algorithms and repre-

sentations for geometric planning problems. An algorithm employing an approximate

representation. does not characterize the constraints exactly. A complete algorithm

(for a given resolution) is guaranteed to find a solution if one exists (at that
Ln gecrl cosruton a coninpz.cc 7~ 6.1gruthm, ;nandatcs t'du tciiijoy- .I

V Vi I. I I2 lu.I$k1V

ment of a complete representation. A brute-force algorithm tries to find a solution

through exhaustive search. Heuristic algorithms fall into two (overlapping) classes:

heuristically complete, and heuristically fast. See also the review of previous work A

(below).

The implemented algorithm we present for the classical Mover's problem with

six degrees of freedom employs a complete representation of the configaration space

constraints, and a complete search algorithm (for a given resolution).



i
1.4. Loe&! versus Global i

Vz
Local algorithms for the find-path problem examine local coxmtrMnts in some

neighborhood of real space or in C-Space, and propose motions based on the

geometry of the neighborhood. Typically, local algorithms are implemented as

searches, and the examination of constraints near a search node leads to the
selection and application of some local operator to move the robot in space. For•i-7:•-•-

example, in our algorithm for the six degree of freedom Movers' problem, the local

constraints correspond to the geometric structure of C-surfaces in a neighborhood,

and local operators consist of motions along C-surfaces) In general, a local planning " - •-•-

algorithm will b•- complete if (1) the closure of the local operators is complete for the

arewise-connected components of C-Space, and (2) each local operator attempted

ensures that a collision-free path exists between configurations in the search•

Ilowever, our observation has been that in general, evesl complete local

algorithms can get lost examining irrelevant local constraints. In particular, without

adequate knowledge of the connectivity of a workspace and the ciasscs of paths • =__

it contains, such methods may choose impossible or ill-advised candidate paths: .q
hence they may take a long time to converge. •

A global find-path algorithm attempts to construct a model of the connectivity •i

of the workspace. We believe that the connectivity cf contlgaration space can be•

inferred from the connectivity of real space. Good hypotheses about the channels, •

,w_ ....... cl•-•e• of ,-r'nth• ...... thrmo•'... ...... €,,. free-space can serve a.• guidance for a more detailed

method. While there exist several proposals for global approaches to the Movers'

problem, in Donald (1983a) we ;dtempt to formalize criteria for the design of such_ n,

algorithms. A global planner based on these criteria was implemented, anti coupled

with a complete loczl algorithm to form an integrated planning system.

Channels are an encoding o1" free-space corresponding to the closes of paths
•enewlt•

within an environment. An implementation exploiting Lifts global mod•,l of the

connecLivity of free-space has been able to solve two dimensional find-path problems i

in several minutes which formerly took many hours. The algorithm is essentially l,•"

ITlil. I'x:uiilllc i.<l ilhislrril.ivl,-'tnd tylic:il or tliv Jo¢.al ctl=l,•lr;lilitS ailcl op('r;tt(irs. "l•lite ilulllciviellted •fi•'•l•

lll;lllli('l" i• iiIlil'l" coliii;ii•.;il,•,d• a.• we sltall Biw.,
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a problem-solving strategy using a horrcomorphic reduction of the search space.

Sce Donald (1983a) for a description of the channel algorithm. In appendix 11I,

we discuss the design and integration of local and global planning algorithms in

903 X SO(3).

1.5. Review of' Previous Work

1.5.1. Intro~ductionl

In this section we review previous work on geometric planning problems.

We also give a formal char acteri zation of completcness for the spatial planning

problems. A survey of robotics issues in robot motion planning can be found

in Brady, et at. (1980). For related work on the mover's problem, see Brooks

(1983a), Lozano-PNrezz (1981, 1983), Lozano-Pe'rez and Wesley (1979), Brooks and

Lozano-Per6z (1983), Schwartz and Sharir (1982a), Reif (1.979), Moravec (1979),

Udupa (1977) and IHopcroft and Wilfong (1984). Wingliarn (1977) and Popplestone,0

Some issues in automated structural design are addressed in Donald (1983b). For

a review of geometric modeling techniques, see Baer, Eastman, e1 al. (1979) and

Requicha (1980).

1.5.2. Coiriplexity-Theoretic Results

In semninal work on thc complexity of the Movers' problemn, Reif (1979) has

shown that the motion planning pi-oblein for a robot with an a~rbit~rarv numbie~r

of degrees of freedom in the form of arm-like linkages is P-SPUaee-.h~Lrd. Ilopcroft,

Joseph, anid Whitesides (1982) have shown similar results for planar manipulators

with n linkages. In general it has been found that with n degrees of freedom, the

problem is P-Space-hard. Happily, Schwartz and Sharir (1982a) have demnonstrated

the exist~ence of a polynomial- time algorithm for thc Movers' problerin with fixed

degrees of freedomn, where tlhe size of the problem is measured in the ILUmber ofL

obstacle faces in the environment.. The algorithm of Schwartz and Sliarir (19824)

for the classical Movers' problemn is unfortunately of timec complexity

O ( n 2 (i i -) 

A



where n is polynomially dependent on tile number of faces in the environment, and d

i• the number of •egrees of freedom, For 6 degrees of freedom this becomes O(n4°U6).

IIence it serves chiefly as an exist,.nce proof for a polynomial-time algorithm.

The coordinated motion problem has also been given some attention: Schwartz

and Sharir (1982b) address the problem for 2 and 3 circular bodies moving amidst

polygonal obstacles in the plane. The coordinated motion system has degrees of

freedom equal to the sum of the degrees of freedom of the moving bodies. These

results lead us to expcct exponential behavior from all motion-planning algorithms

as the number of degrees of freedom grows. For these reasons we will confine
ourselves to the classical Movers' problem, whicll has 6 degrees ot" freedom in

3-dimensional space.

Reif (1979) also sketches a polynomial-time algorithm for the classical Movers'
problem, but it appears incomplete in that it ignores constraints arising from the

interactions of faces o1" Lhe moving, , , .... -,L -,: .... r _•...,..! .... • •.•
consider edge-edge interactions in 3 dimensions.

• 4

The foundations of our approach lie in Lozano-P6rez (1981, 1983), Lozano-P•rez

and Wesley (1979) and Schwartz and Sharir (1982a). The problem of moving a

complex polyhedral object among obstacles is transformed to the problem of finding

a path for a point in a nlgn-tJmzeztsit•n•,l t:4UlltlgUlklkblUll •I-)BC•..

Brooks and Lozano-Per6z (1983) have implemented a gener•.l path-finding • i

algoril.hm for a polygonal object iu the plane with two translational and one
rotaLional degrees of freedom. Their planner uses hierarchical subdivision of Lhe

3-dimensional configuration space •2 × S1. The subdivision algorithm t, as been

specialized to the particular geometry of the Movers' problem in •2 X S1 and

while in principle it is exLensible to the 6 degree of freedom problem, its space-

cc, mplexii, y in tgh dimensions is ::kely t.o be ,.,nc, t,., ;: ctivc. A i;robi•,:a" •-•tb the

hierarchical subdivision ,•trategy is thuL it, i.a• t tc-hL cxp!o:t, ing cahetence in

C-Space. Its spatial taxonomy is restricted to filled, empty, and mxxed, in a
world where a.luost everything is mixed. Hixed cells are subdivided until an empt, y • i
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region is found. However, it is hard to propagate this useful information to guide

the search through nearby, unrefined cells in the subdivision. One goal of the

algorithms and representations in this thesis has been to exploit coherence in the

configuration space. The intuitive appeal is that the intersections of C-surfaces "go

somewhere useful" (i.e., around the obstacles). We will adopt an approach which

exploits the coherence of C-Space obstacles by moving along the intersections of

high-dimensional C-manifolds 2 parallel to the obstacle boundaries.

Lozano-PNrez (1981) has described approximate solutions for Cartesian manip-

ulators with 6 degrees of freedom (in principle) which consider 3-dimensional

slice-projections of Configuration space. In practice these approximations are only

reasonably accurate for Cartesian manipulaLors with 4 degrees of freedom. In

principle, the C-Space constraints on motion defined by Lozano-PNrez (1983) can

be extended directly to a V degree of freedom planner; indeed, this is our starting

point. However there are many interesting and complex problems to work out (see

Brooks (1983b) for another discussion of these problems). In particular, there are

many unresolved mathematicai details for the 6 degree of freedom case. Given

the mathematical model, there still remains the issue of a complete planner which

exploits the model.

1.5.4. Global Methods

Global methods for path planning attempt to construct a model of the

connectivity of free-space which can be related to the Voron.oi diagram (see

rysdaac (198~3"j. In particular, BirooKs (983a) has implelnemnteo a 2-dimensional

path-planiner which models the free-space as an overlapping union of Generalized

Cones (Binford (1971)). Each colic provides orientation constraints on !notion within

the cone, and these constraints are intersected to find a translational path along the

cone axes (called spines) interspersed with rotations at the spine intersections. This

work was extended to a six-link manipulator for moving payloads with 4 degrees

of freedom (Brooks (1983b)). The extended algorithm uses the same colie model,

but sweeps each cone vertically to build prisms at horizontal slices through the

workspace. This inethod works well when the payload (or polygon) is small and

'A (G-maiifl't d is Im laiiifold iii a configulration space.
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convex in a relatively uncluttered obstacle environment. It is not at all clear how

to extend the algorithm to large, non-convex moving objects, or how to consider

more than one rotational degree of freedom at a time. Nevertheless the concept of

computing "freeways," or "channels" through free-space is attractive in that it can

provide global guidance to local algorithms (such as C-Space mcthods), and can

enumerate good hypotheses about candidate paths through complex workspaces. .

Using an approach called retraction, &'Jrnlaing and Yap (1982), 6'Diinlaing,

Sharir and Yap (1982) construct a Voronoi diagram for a two-dimensional workspace

and consider moving simple objects (a disc, a line..segment) along it. This technique

was mentioned by Brooks (1983a). It has not yet been extended to polygonal objects

or 3-dimensional cases. We will address this issue by considering Generalized

Voronoi Manifolds.

1.5.5. Approximation and Completeness

Planning problems have two components: characterizing the constraints, and

searching for a solution which satisfies the constraints. One attempts to achieve a T
complete (in some sense, "exact") characterization of the constraints, and a complete

search algorithm for the representation. Since the Mover's problem is a continuous

mathematical decision problem, we must in general consider a discrelized version of

the problem (see Reif (1970)), for example, we might represent the polyhedral input

models as systems of linear inequalities within a fixed accuracy E, with 0 < f < 1.

In fft tfhere aire twn inAds nf resoruiot.n., limit., Any a;,Tnrithni which employs re--!

arithmetic has a resolution limited to the machine precision. (Schwartz and Sharir

(1982a) employ rational and algebraic numbers instead). For the find-path problem,

we are interested exclusively in the physically realizable paths, that is, utwse paths

lying entirely within open sets of free space. The resolution limit Reif mentions is

essentially a bound on how small an open set can become before it is no longer

considered open. The open sct resolution limit is typically greater than the machine

precision.

Almost all find-path search algorithms are complete only to this fixed resolution;

the notable exception it; Schwartz and Sharir (1982.1), which appears to be

search-complete arid resolution independent. We should stresb that for a complete
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rcpresentation, the resoluticn-dependence is in practice not a severe restriction.

However, the effect of a complete search algorithm running on an approximate

characterizatiorn of thie cortstraints is not clear. In principle, in case of search failure,

it is sometimes possible to refine the approximation and redo the search until a

path is found. This possibility has rarely been exploited however, and introduces a

number of unpleasant technical and conceptual issues. A complete search running

on an approximate representation will in general result in an incomplete algorithm.

For these reasons we would prefer a complete characterization of the constraints

coupled with a complete search algorithm.

We will place this thesis in the context of previous work by considering the

following criteria:

(i) For what degrees of freedom does the algorithm apply?

(ii) Is the representation (the characterization of the constraints) complete?

(iii) Is the search complete (at a given resolution)?

(iv) HLas the algorithm been irnplemented?

Approximate Representations

Much of previous work has focused on approximate characterizations of the

constraints. Approximate representations may (1) artificially restrict the degrees of

freedom in a problem, (2) bound objects in real-space by simple objects such as

spheres, or prisms with parallel axes, while considering some subset of the available

dearces of freedom, (3) discretize configuration space at certain orientations, or (4)

approximate swept volumes for objects over a range of orientations. Such restricted t

planning systems may lose solutions which require exploiting all six degrees of

freedom. An approximation of the obstacle environment, robot model, or C-.Space

obstacles can result in a transformed find-path problem which has no solution.

Some approximate algorithms--for example, those of Brooks-rUn quite fast

for the class of problems that they address. In general, speed has been a

motivating factor in the design of these approaches. We also observe that some

approximate methods were motivated by the difficulties of modcling constraints in

a full 6-dimensional C-Space. Thebe difficulties in turn stemmed from unresolved

mathematical problems relating to both C-Space itself and to the structure of
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C-Space constraints. However, even with a complete mathematical model in hand,

we are still confronted with the problem of devising a complete planner which

works using the full set of constraints.

The configuration space of the three dimensional classical Movers1 problem with

six degrees of freedom is q'3 X SO(3), where SO(3) denotes the three-dimensional

rotation group. In this thesis we first complete the mathematical framework for the

configuration space R3 X SO(3) and present solutions for some heretofore unsolved

problems. This foundation then allows us to propose and construct a complete

planner exploiting the full set of constraints and 6 degrees of freedom for motion

planning in OZ3 X SO(3).

In this section, we characterize the completeness of previous work. Unless noted,

search-completeness is resolution- dependent. Schwartz and Sharir (1982a) describe

complete representations and complete (unimplemented) search algorithms for 2D

and 3D. These theoretical algorithms appear to be resolution-independent. Brooks

and Lo.ano-Pcr~z (1933) describe cromplete representations and search algorithms

for the problem in R2 X S'. Lozano-Perez (1981, 1983), Lozano-PNrez and Wesley

(1079) give approximate representations (except for translation) with complete

search algorithms for • X SI and 0' X SO(3). These approximate representations

also model Cartesian manipulators. Most algorithms for W:i X SO(3) can bc extended

for Cartesian nianiptlators in a similar manner. For translations, l~ozano-P6rez'

algorithmis are complete to the mnachine resolution. Brooks (1983a,) provides an

approximate constraint characterization with a complete search algorithm for

R2 X $l; Brooks (1983b) extends this for a linked arm carrying a payload with

degrees of freedomn 90 X S1. A significant contribution of Birooks was the addressinig

of the issue of jointcd arms. The open set resolution limit for the Voronoi mnethods

(for simple objects in two diineisions) is no larger than the machine precision.

Udupa (1977) and Widdoes (1974I) used approximate representations and incomplete

search algorithms in addressing find-path for jointed arms.

In this light, we can characterize our algorithm as follows:

0 This thesis presents the first implemented, reprcsentation-complete, search-

complete algoTithmt (at a given resolution) for the classical Movers' problem in .. A
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XR x 8(3).

1.0. An Outline of this Thesis: Research Contributions

In this thesis we present a local algorithm for the six degree of freedom

classical Movers' problem. The channel based algorithm developed in Donald (1984)

is describcd in Donald (1983a).

At the heart of this research lie certain mathematical developments that may

seem fairly abstract at first reading. To motivate the mathematics, we first present,

in chapter 2, the design and implementation of a six degree of freedom planning

system for the classical Movers' problem. The description of the planning algorithm

assumes that certain representations and mathematical tools are available. In

subsequent chapters, we develop these tools in answer to the following questions,

for which chapter 2 assumes solutions:

Representational and Algorithmic Questions

(i) What is an appropriate representation for constraints in a six dimensional
C-Space? (Chapter .).

(ii) In the six dimensional C-Space of the classical Movers' problem, the domain of
- each constraint is the product space of R3 and a complicated three-dimensional!
0• manifold (with boundary) ou the prujective three splhere. What are these regions,

and what is their structure? What representation can be used for these domains?
(Chapter 3).V

(iii) How do we plan motions using constraints whose domains change with the
motions? (Chapter 5).

(iv) Given a trajectory in C-Space, it is necessary to find where it intersects
the boundary of C-Space obstacles. How can trajectories be intersected with
C-surfaces whose domains change along the trajectory? (Chapter 4, 5).

(v) How can intersection manifolds be constructed in C-Space? (Chapter 4).

(vi) How are motions planned that slide along C-surfaces and intersection manifolds?
(Chapter 4, 2).

(vii) How can rotation space be decomposed into regions where the set of applicable
constraints is invariant? (Chapter 5).
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How to R~ead this Theosa

Chapter 2---covcring, the design and implemnentation of' the search algorithm in

C- Space -- presents the most heuristic component of this research. It is also in sonic

sense the most accessible chapter to the non-spec'Hist. Hlowever, do not confuse

chapter 2's implementation details and search heutristiAcs with the representational

and algorithmic framewvork developed tinder the considerably more formnal aegis of

chapters 3 through 6. The thesis is struztured so that thos2 prefering a presentation

more in keeping with thle traditional style of mathenmatical exp~osition may read thle

chapters onl GDOF' planning in the alternative order:

(1) Geometric Planning Problems

(3) Questions of Representation: C-functions and Applicability Constraints in a
Six Dimensional Configuration Space

(4) Mathematical Tool8 for Motion PNanning in a Six Dimensional Configuration
Space

()Moving Through Rotation Space

LG Thu -Vororioi D~iagram and its Relationship to Intersection Manifolds
()A Plannin~g Systemn for the Classical Movers' Problem with Six Degrees of

Freedom.

In the alternativc order, the representations and algorithums are derived and

prcsented first, arid the application and implementation is presented last.ou

Chapter 3 presents a formal franiework in which several open questions abouit

configuration spae constraints-notalbly! . (a-bovc) -mray be solved. Chapter .3 v

also derives ftindamenrtal structural propcrties of C-Space constraints, in particular,

the domruaanis and doinain top~ology' of C-functions for the classical Movers' problem.e

We call these domnains applicabiliy conqtraints. Cha;pter 4 audresses the inler.5ectiort

p-roblem irt higlu-dimncnsiowil C-Sp~uce: how to couxstrurt. and slide a~ong intersoction

rnanifolds, arid how to interecxt trajectories with C-surfaces and appficaibility

comustraiats. We dcnionstrate thc form. OF the intemnct:(Aoi rinaiuifuhk. for X SO5(3)

and W X S1. Chapter 5 di.;cua.i;es algoritlinnis fmi wniing through rotation i space,

amnd for decomposing rotation space_ into equivalc.,twe classes where the set. of'

appl~icablu- conistraints ib innvariant.- In chapter t", we v.adtcrid thi! coinkcept of' the Iv.

tgimlerali zed Voronloi dtiaguamii (whi- Diys,)'idh (lW) - ,''-ftt( rog oe plan(e) to thle Csix
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dimensional C-Space W3 X SO(3), to provide a formal and constructive definition

of the C- Voronoi Diagram, or CVD. The CVD is an attractive construction, in that

it. contains a representative component for each "branch" of free space. Each such

component is a submnanifold of dimension 0 < d -- 5, called a Voronoi manifold.

We will derive the following zonnection between intersection manifolds and the

CVD:

Theorem: (The Equivalence Theorem for intersection manifolds and the CVD).

Let p be a path along the CVD. p lies along a connectcd chain of Voronoi

manifolds, VI, ... , Vk. 'We demonstrate that for each Voronoi manifold Vi, there

exists an equivalent intersection manifold of level C-surfaces, Ii. Furthermore,

we also show that for every connected chain of Voronoi manifolds, there is an I
equivalent connected chain of intersection inanifolds (of level C-surfaces). (The

equivalence we demonstrate is actually stronger than homotopic equivalence,

but the additional details are too complicated for this chapter).
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2
A Planning System for the Classical

Movers' Problem with Six Degrees of Freedom

In this chapter, we describe the design and implementation of' a planning

systcem for the chusical Movwrs' problekri v1ih six degrees of freedom. The planning

algorithm required the solution of the seven "Representational and Algorithmic

Questions" listed at the end of chapter 1. The solutions to these problems are

presented in subsequent chapters.

In this chapter we will simply assume that these problems are solved, and

proceed to employ the solutions in cortstructing a planning algorithm. Of particular

importance will be two effective procedures, which address the intersection problem

in C-Space:

(I) Given two or more level C-surfaces, construct their intersection manifold.

(Chapters 3 and 4).

(I) Given a C-surface and a trajectory, find their intersection. Determine

whether the intersection lies on the boundary of a C-Spare obstacle. (Chapters

4 and 5).

The immediat-e application of (I) is the sliding problem: How to slide along

one level C-surface, and how to slide along the intersection of two or more level

C-surfaces,
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Using the point navigation operators (chapter 1), we implemented a best-first

search algorithm in C-Space. The algorithm has nice theoretical properties which

include completeness (at a resolution). This chapter describes the heuristic search,

with particular emphasis on the heuristic strategies that evaluate local geometric

information, and oin the interaction of these strategies.

2.1. Derinitions

A topological space M is called an n-dimensional manifold if it is locally

homeomorphic to T". A chart is a way of placing a coordinate system on M: if

U and V are open subsets of M, two homeomorphisms f : U -+ f(U) C W and

9 : V --+ g(V) C R'" have C' overlap if the maps

fog-1 :g(UnV)--+ f(unv)
g of : f(unv) - g(unv)

are also C' (that is, possessing continuous partial derivatives of all orders). A

family of nairwise C"-owrlappinr, hnmeomornhisms whoso domain covrn q M is

called an atlas for M. A particular member (f, U) of an atlas U is called a chart (for

the atlas U), or a coordinate system for U. For a good introduction to differential

geometry, see, for example, (Spivak, 1979).

In this thesis we usually specify charts via the inverse form h : R -- M

(where R is an open subset of R') with the understanding that it is the irTverse

(or set of local inverses) h-1 which provides the fami!y of charts { (h-', Wi) }, for

UJ Wi --= h(R). As an example, consider the map t, that specifies a charo for a five

dimensional level C-sui face:

IL:,.5 W X 80(3)

(Y) ZOF 0, & .E12Y + 1'3Z + E-4 I-E , y, z, V, 0, 0).

Here the Ei are smooth, real-valued functions on 50(3), that is, • (¢', 0, W) - .

The inverse imap h- 1 i:i obvious, and provides a chart for the five dimensional

subinanifold of W X S0(3). In subsequent chapters we will dcrive such chaits, in

the forin or It; in this chapter, we will take thern for granted.



2.2. Introduction

We are now ready to describe a planning system for the find-path problem in

W X SO(3). The aJgorithm has the structure of' i search and is coniplete (for a

given resolution). The basic idea is as follows: we are able to define and implement

certain local operators. When applied at a configdration in C-Space, a local operator

attempts to move the robot in a specified direction until either the subgoal or an

intervening C-surface is reached. The local operators have the general form

Move(X :con f iguration, i:direction, limit:con figuration), -

and are designed to return X', the configuration reached in direction -, and

the reason for stopping (which will either be "reached subgoal" or the name of

the C-surface which halted progress). The local operator assumes that X is in

e-..... d.n.. u that there exisf•s -a .rp•aQn-f" " mli.h alnno 0 taking the

robot from configuration X to X'. Furthermore, we insist that limit =- X + tO, for

some positive t. Ih general, b can be represented as a tangent vector to R3 X S0(3);

the space of directions is clearly locally homeomorphic to R6.

Many different Move operators can be defined. Let X - (x, 6). We will restrict

0 to be either a pure translation

or a pure rotation

4~,-sb, +0,-0±, 1

"The closure of these operatorb is complete for the space of' configurations. By

this we mean that in the absence of obstacles, there is sonic finite sequence of '.,.*:;,

operators which carries any configuration X into any other configuration Y. I. isS

often convenient to think of xhl•se operators as Translatc(X, ýt, x') (where fi E 3V

and x' is a goal translation) and Rotat,(A , ýý, p') (where ýb is an angular dircctiut'i
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and VcY is a goal angle). The theory and implementation of Translate and Rotate

is discussed in chapters 3, 4, and 5.

Given the local operators, we can define more sophisticated local strategies for

spatial reasoning. These strategies are implemented by local experts' in C-Space.

For example, one local expert attempts to circumnavigate C-Space obstacles by

sliding along inter-."econs of level C-surfaces. Another, "greedy" expert tries to

translate or rotate straight towards the goal. A local expert typically examincs the

local geometric environment of C-surfaces, their normals and intersections. It also

takes into account the history of planning. The local experts can be thought of as

issuing "commands" in terms of the local operators. Depending on the results of

these attempted motions, an expert may issue other local operator commands, and

eitLer directly invoke or leave a fo:warding message for another local expert.

"To summarize: a local .,perator ir arn algorithm for moving along a specific

trajectory until a corstraint is encounte, 30 (or a subgoGal is reached) . A local expert

is a strategy for choosing the trajectory bas2d on an examnination of the history of

planning and ths Jocal geometry. When a loc,d1 expert chooses a trajectory, it calls

on some sequc'nca of local opreator3 to iealiz. it.

II

""-'2 I, hr,, l al , r i,,• ,','r wa. r, o,,?t i , I1,; y a;ut•,,t-i, iii d,1,i i Auii•lc.c-r will, Ng-N u yen (Ng, ,yc~i

(li 8:)), Ion:At I J~o .im (- hNrc, : at! Icdi icy Fir'os.
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Figure 2.1. Schematic ilhiwtration of the "Bumjble" strategy 5an exhaustive search). A fine

six-ditnensional lattice is thrown across C-Spacc. By exploring from one configuration to it.

neighbors in the lattice, a path will eventuaLily be found, if one exists at the lattice resolution.

Fortuiiatcly, it is also possible Wo take large step.s in the lattice, stud simply record the nieighborhoods

the path visits.

2.2.1. Planning and Search

The planning algorithm is implemented as a search of configuration space. The

search constructs a graph of neighborhoods which have been explored. (We will be

more precise about 'vhe term neighborhood later). Each node in the search graph is

.associated with a configuration and contains information about the local geometry

and the history of planning. The search algorithm chooses a node for exploration.

Several local experts are then applied at that node. Each expert can produce a new

search node. All oc f these are sons of the explored node, and are added to the search

queue. The new sons are connected to their father by the arcs of the search graph

and each son may be thought of as An exploration from the father.

If at any point in the search, two explorations reach the same neighborhood,
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the planner attempts to merge the associated nodes into one node.

The search algorithm is Best-First (Nilsson (1980)) with the metric or progress

established as distance from the goal. (This requires placing a metric on both

translation and rotation space). Other search measures (such as path length, or

time) would also be possible, and an A* search strategy could be exploited to find

optimal paths. In practice this would probably require adding new local experts in

order to ensure reasonable performance.

A. search nodes are explored, they are entered in a priority queue, called the

.search queue. The nodes in the search queue are ordered by the search metric.

Some search strategies we discuss require two search queues: when the primary

queue is exhausted, then nodes from the reserve queue are explored.

We will proceed as follows. First, using the local operators alone, we can define

a complete search strategy (at a given resolution). This search strategy can be

considered the most primitive local expert, and is known as the "Bumble Strategy."

1ly applying the Bumble strategy at every search nede, we are guaranteed to find

a path (at a given resolution) if one exists.

Next, we will define more complicated local experts which will be applied to

search nodes at the same time as the t3utuble expert. These experts greatly improve

the performance of the planner.
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2.3. A Complete Search Strategy

A search node is associated with a configuration. Every configuration is in turn

associated with a neighborhood of C-Space. The neighborhoods form a partition

of C-Space. Since many configurations arc associated with one neighborhood, so

several search nodes may have configurations lying in the same neighborhood.

Assume the neighborhoods arc "small." If the configurations of two search

nodes are in the same neighborhood, it indicates that they should, ir possible, be

merged into one node, since they are close together. By keeping track of the set of

explored neighborhoods, we can avoid redundant explorations. If the neighborhoods

are sufficiently small, then the search will be complete at a resolution closely related

to the neighborhood size.

7
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Figure 2.2. f, g BZ X 50(3) -. are C-functionis which descri ,be t~wo level C-surfaces, ker f
and kerg. The level C-surfaces are smooth, 5-ditticiniional maniifolds parallel to C-Space obstacle
boundaries. Froml X E kcr f, threc paths sliding along the level C-surface ker I are shown.
Each path is orthogonal to Vf. The sliding czrpcri plans much paths aloyng 5-D level C-snrfaces.
(ker f) lker g) is the intersection of the two level C-surfaces, and is a 4-dimensional manifold.
The interacclion expert plans paths along intersection mnanifolds. Such a path p is showni from
configuration Y.

It is possible to devise a complete search strategy (at a given resolution) using just

the local operators. We first throw a fine six-dimensional lattice2 ov'er configuration

space. The latticze is used to keep track of the state of the planner, i.e., which

neighborhoods have been explored, and for computing the connectivity1 of these

neighborhoods. The lattice will "wrap around" in the rotational dimensions, but

this is easily implemented using modular arithmetic. We will define an adjacency I -

function for points in the lattice; in addition, when a neighborhood is explored,

the corresponding node in the lattice is marked. When a search node is chosen for

exploration,

2 1.e., thle f..&ctor spa1C(, or oie pararrieter space are quanitized, and( the lattice is a partial order
mii the Cartesian,1 product. of the fjactor space qiuantizations.
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(i) X, the configuration of the search node is mapped to L, a point in the lattice.

L is the name of the neighborhood V([L) centered on L, which contains X.

(ii) The unexplored neighborhoods adjacent to V(L) are found. Each of these

neighborhoods is also identified by a central lattice point.

(iii) The planner attempts to move to each of the unexplored, adjacent neighbor-

hoods.

(i) has the effect of mapping a neighborhood of C-Space to a canonical clement

(which lies on the lattice) in its interior. These neighborhoods decompose R:' X SO(3)

into equivalence classes with the same canonical clemeqt. When a neighborhood

is reached for the first time, we mark its lattice point as explored. The search

terminates when a neighborhood containing the goal is reached, and when that

exploration can be connected to the goal configuration.

S 76

1WV



2.3.1. lunplementation of Neighborhoods and Lattices

In principle, it is posiible to implement the lattice as a six-dimensional array

(with modular indexing for the rotational dimensions). In practice, for any fine

resolution, this array will be enormous, and very sparse. Although an adversary

can design a find--path problem for which our planner must explore the entire

lattice, in practice this does not occur. However, we must maintain a record of what

neighborhoods have been explored, in order to generate the unexplored neighbors

for a search node. Since the array is sparse, we will employ a different strategy.

A partial order can be defined on lattice points by considering them as

six-dimensional vectors. This order has no particular geometric significance for

the rotational dimensions, but it c.ia be used to store explored lattice points in a

binary tree. Since the vast majority of neighborhoods are never explored, the tree

it typically small, even for fine lattices. To mark a lattice point as explored, we

insert into the binary tree. To find whether a lattice point has been explored, we

search tihe tree.

It is desirable to employ a fine lattice in order to ensure completeness at a fine

resolution. The use of a binary tree to record explored configurations effectively

removes the problem of lattice size for storing explored configurations. For example,

if we segment C-Space into an N X N x ... x N lattice, then an array would

have to be N 6 long. But the binary tree need store only tlhe explorcd locations, and

(if heigh1.-balanced) can access any leaf in O(log N) operations.

K
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If the lattice resolution is fine, then the planner as described so far will take

very small steps for each search exploration. This has been remedied as follows:

If a local operator is invoked to find whether limit may be attained from X in

direction ý, it must effectively intersect a path in direction 0 with all C-surfaces. It

is not much harder to find the first constraint along the path p(t) = X + t10 (even

if it is beyond limit): in particular, we note that all intersections along the path p

may be sorted on distance from X. The complexity of finding this first intersection

along p is independent of the lattice resolution (since the intersection algorithm has

nothing do do with the lattice; see chapter 5). We can "sample" the portion of the

path which lies in free space at the lattice resolution. All of these configurations

are then marked as "explored", and as reachable from their immediate neighbors

alopg the path. Thus they form a connected chain in the lattice along the path p.

While all these configurations are in some sense sons of X, in practice we will select

only one or two to be entered in the primary search queue. These sons might be

(1) the son which is closest to the goal, and (2) some son at a reasonably large step

away from X. This step size, called the Bumble resolution, might be 3 to 10 times -

the lattice resolution. The other sons should be kept on a reserve queue, which can

be explored when the primary search queue is depleted or exhausted.

In practice, it may preferable to enter ranges in the exploration tree, for

example, to record that all lattice points

(x, y,z, 0, 0,¢) : L <_ (x + k d 1, y, z, V, 0, 0b)

(for sonic integer k) are explored. This requires keeping an exploration tree of lines

instead of configurations, with the intent of minimizing the number of exploration

tree entries. When lines are entered into the tree, they may be merged with previous

lines to form connected components of explored regions. These operations are

supported by hierarchical subdivision algorithms. At this point in the experimental

use of the planner, it is still too early to tell whether this optimization is necessary.
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In practice we have had no problem in selecting a very fine resolution for

the lattice (one selects a fine lattice resolution, and a considerably larger Bumble

resolution or step size, as described above). This lattice-based strategy is not

only theoretically complete for a given resolution, but has also been used to find

very complicated paths for the 6 degree or freedom classical Mover's problem.

However, the algorithm has an "excessively local" flavor-it is clumsy and quite

slow when employed alone (hence the strategy's name). We can construct much

"smarter" heuristic experts which attempt to exploit coherence in C-Space. When

these experts are used in conjunction with the Bumble strategy, we obtain a

planner which is not only complete, but which can solve complicated problems in

a reasonable amount of time. We continue to find the lattice uscful for recording

the planner's explorations by the local experts.

2.3.2. Keeping Track of Connectivity

Suppose a subsequent exploration reaches the same neighborhood. There are ._

4IW• tltJ-1, A WILA..ti ViC Ga,11 uithU f47' A1ii0nithii•i U1 'die conneci algorithm:

The Mark Algorithm. Discard the exploration, since tihe neighborhood is already

explored. In practice, the mark algorithm often suffices for path-finding. The mark

algorithm computes a directed, spanning tree 7' of explored neighborhoods, which

is rooted at the start configuration.

The Connect Algorithm. Connect together the search nodes for all explorations to

that neighborhood. The connect algorithim is more complicated, and requires tile

following bookkeeping (see figure 2.3). Let N be a neighborhood of W X SO(3),

and L E i(.A) be a lattice point which is the canonical element for N. Suppose X is

an exploration of N, i.e., X (- N is the final configuration in some motion reaching

N. Let s(X) denote tihe search node [or X. (11 X is the first exploration of N, then

create a search node 4(L) for 1). l)etermine whether there exists a path from X to

L (using the local operators). If so, connect s(X) and s(l,) together. .'

The connect algorithm computes a m-1re complete connectivity graph for ,

the neighborhoods of C-Space. It computes an undirected graph 11 of explored

neighborhoods, which may contain cycles. As long as 11 is connected, then T %%
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S _ ... . .._I ,5.,.

Figure 2.3. The iatice point L is at the center of a neighborhood NI o C-GSya,. Sem.ci:.
explorations arrive at cmflguratiouns X and Y in M1. The planner attl,-npth to find r% pa'•.,
conticcUnug X ;ýwl Y* b~y tryizig to corunect Ihotl coniugurations to L.

is a spanning tree for II, and the mark Elgorithm is complete for plhnII'ng a

connected path along H. However, not all planning strategies admit this kind of

"connected planning." In particular, when we considcr ;trategics which corIstru•-

partial paiiti and pn•.aving isnaaiiuo "" & -'-7. later c n[et '.P), U o

algorithm is necessary. (See the Suqgcstor strategy, below, for an example).

2.3.3. Dicusion of the Bumble ,Strategy

S•1pposc the lattice spacing is dT and d1 j in the translational and rotational

dim iow.. "I hea th c adjacent lattice points to L (z, Y, Z , 0, , ) will be: .. 0"1r
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2' a• Z V. 0. 0)

(0, y -w ;, d7 ', 0, ,,)

(I 111 z ', V), t?,)
Ix, y;. z, i1/' ± die. (nit)d1 2r.), 0, ~

(x, y, z, i/;, 0 ± 4 (food 27r), ~

Each adjacent lattcI point is the cent.ci oi a nteighborhood oF configurations which

is conbigaous to the iieighborhood of L. IE-auh such icighborhood can be reached

(if it is in free space and there is no intervening C-surface) by the local operators

Tran:;late and Ro~ate. Since there are 12 neighbors for each lattice point., we have

found it. inadvisable to explore them all for each search node expansion. Instead,

tho set of unexplored adjacent neighborhoods is raaiked (in terms of proximity

to the! goal), and motions towards the top k7, translational and kle rotational

neighbors are attempted. (Typically, ki, PTý 3 and k,: • 2). If the node is reexplored

later, motions toward k-1. + k,,j more of the unexpiorcd neigh!ý:ors will be attempted

(if 0. ere are L ha.. many Icit). When using the mark algorithrrm (above), we say

an exploration is sucCcessfui f ifL reaches a new (unexplored) ne*ghhorhood. If an

exp.um iioan is successful, then a new :earch nude is created and the v(ighborhood

is miarked a.s explored. Since the eighiaorhood'• "anie" k: its !attice point, ttis

simply correspond,; to marking the lattice point. Whether .-ucccssful or not, all

explortion, are rccurded at the parcnt seach noe4 C so t•,t tlicy will not be tried -

-2 .. ..... t.. ... A "V k^.. . ...1 .... , j1 y tt i-L..att.. . ia GtIc. " c

point [. Tht: ti cxpjI nd adjciccnt lattice portl.s to L indicate a set of' subgoal:; to

be aI.u'aiud frox12 X. T'Ie 'll(! bl, .;¶xategy ranfk., these l u1goals, (housecs some of

Chin ird x'-e.AA cwaej ~~xlriA iij may attain thiem. The local op~erators are then.

e',nployvd Io (try , ::aliz(- the .t'kcced traj,.ctories. "he.c cxplo-ratio, arc then 0

reco:d;ed sc •,hat onlr I(': exjiorations will be Jtrstued ill tihe futoure. Not" that.

thie plt:-,n is ro', coistirained to oiuve along the lh a,tjcv, iml that although thli ,

},,al.s lie Oil the Littic(e; the inotion from X to arny subgoal does riot, unless

The local cxpel .C.; are con'-iderably mo•e ,sojphi.,Aticah'd, thka• i.he I in mu Ide strategy.
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"Il'hici subgoals iiced not. life ar the latticer, and the motions specified to the loca!

UpCratto78 ficed niot, lie along the lat~tce. The lattice is still employed tc keep track

of the plannliEg history and tlw cornncctivity of explorud neighborboods.

Clearly, the arcwisc-ceuncected sets or lattice pioirnts are closedi urder the

operators Tra,ýLxi32i and Rotate. If a path exists at the lattice resolution, then

the scarch is gm-naantoed to find it. We Ecee now exactly what. the resoitition for

this fivd-path -Ogorithin is: by choosing a sufficiently !itie lattice, thc algorithm is,

(tri tiily) complete a' the lattice resolution. As we saw abo'e., we can ctwose a very

fine Littiuc With JI.T.le. cori.put~ational overiead. One final point: the sluart and goal

configuiations ina,' not lie directly cn the lattice. This is not a problemn, however,

since the loc"l upci ators cast ensure th4l therec exists a path from the start and goal

to the nearest ýattiLC point.

-.4. Local itxpvurfs for the Find-Path Problern

21'iA. IPati 1f'lanninL,- versu.; Continuouos Iuntersect'-oir Detection: Why W~e

Nced Local Experts

TVhe Translate and Rot ate operators detect collisions along continuous

trajectories. 3 CGiveti thesc operators, it is possible to devise a comrplete path-planning

algorithm basud orm something fike thc IBurble strategy, above. However, while

cormplete, this is not a par~icrilarly good algorithm, in that. it says nothing about

how or when the opcrators should be applied. The domnain of the operators is

large ft . or realistic path phlaniting, it is necessary to know where, arid in whatW:N

directions to apply them.

Algorb.iri~is which cain (VtC~htcnsuct6iors w.ith obstacles for a robot following

a Continuous tiajcctury "ay unothing zbotit how ;-o plan these trajectories.

hloweve~r. thmeý can, be usc(' to find at rath 1by exhaustive search.

The Trarnýl atc: and Rotate operators ti.se the c'oY,rtahiits in C-Space to detect I~

collisions. Iiowevelu, the-w cmistr.aOnts cani idlo bie ciployed to p~lanl paths. In

chapter 1, we pI oposed an idealized plannier which Colistructed the inttersectiort

:11111 ffi M Ii IMC f I ýidIi o 1141i' II d, irw iCit g',iwEra l iJJc. topt'ra~tv.
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manifolds of level C-surfaces, and slid along these manifolds to nlavigate -i.cund

C-Space obstacles. Such a plannei could exploit coherence in configuration spacez:

by examining C-Space constraints an algorithm can be devi-(:( for intersecting

and sliding on C-surfaces to circumnavigate C-Space obstacles. In the following

sections, we describe a planner which approaches the idcahized planning algorithmr

of chapter 1. Tile local experts are strategies for reasoning about thle local geometry

of configuration space, and for explloit~ing geometric collstralintz to plan collision-free

paths. When applied to a search node, eachi local expert examines thle local geomietry

and history of planning to propose one or more path segnments. E ach path segmnent

is realized by means of the local operators, which ensure that a collision free path

exists.

2.4.2. Designing Local Experts

In the exploration tree of C-S pace neighborhoods, we have seen one type of

information that must be rnainta'ned for planning. In desigiting iocal experts, we

must address the fillowing questions:

(i) What constitutes a local description of a (level) C-surface?

(ii) What i-iforniation ilhculd be stcred at a search node?

(i) can be stated, "What constitutes a sufficiently rich description of the

local geoxmetry in C-Spac.ý to allow robust Lbcal t-xperts?" (ii) relates more to the

history of planning, and the connectivity 01 the explored search neighborhoods.

For example, we want to record thu rehults of previous applications of experts at a

se.arch node, anid the adjacent nodes in the search graph.

'I'li Local Description of' a C-surface

A C-surface ha~s a normal at point. X. Motions tanigent to the C.sitrface at X

will have instantaneous velocities orthogonal to tile normal. We rilrist characterize

tile normal and tangents to a C-surfacc in order to plani trajectories which Slide

along it.N

Let f be anl applicable, positive-vahwnd 0C-function at, X. We can check that. f is

non- redundant at X (see chaipter 6); alterna.tive',y, we inay lieu ristical ly aziumc f is

lori- re1unidanit if its value at X is gnirall. We wish to develop a local clmaractcrization:.-.~

fj ' e 4-C ý.'%- K- rv



of f at X, that is, of the level C-surface S ={ Y I f(Y) -- f(X) } about X. We

should think of S as the kernel of the auxiliary function

Ix X × SO(3) --,
Y •-' A0)---/(X).

The local characterization. will havw two parts, one of which is invariant, aad one .

of which will change for different subgoals. The invariant part of the description is

a pair,

(AX), vf)

consisting of the value of f at X and the normal to S at X'. Now, since R-1 X SO(3)

is not a vector space, the normal Vf(X) to S at X will depend on the Riemannian

metric defined on the tangent space at X. We will employ a metric which admits

construction of Vf(X) using the partial derivatives of f at X, with respect to the

parameterization of C-Space. Hence if rotations are parameterized by Euler angles,

then V = r (V !YL V_ 21- ff Max a ' Liz (lip, ( 'qJ " j

Assume that Vf is normalized to be a unit vector. We i ow wish to characterize

the relationship of the C-surface to some subgoal, G: thi; requires sorie way of

talking about directions in DO X SO(3). Specifically, we wish define a "vector"

algebra on configurations, such that

liun JG -X1= 0

and

lim (G - X). (G'- X) = 1.

These equations express the vector space characteristics which are r.quiied for

our computations on tangent vectors. To construct this algcbra, it is possible to

define a field of inner products over 90 X SO(3), i.e., to dcfinc an inner pro'lct on

the tangent space to each point. Thus R' X SO(3) is a Riemaannian inanild (se,'i

Erdinann (1984)). If two tangent vectors-i.e., directions-are applied to the sane

point, this inner product allow.; us to talk about the angle between two such taugent,.

vectors, or of the angle between an arbitrary tangent vector to WP X SO(3) and the

I .• " .4
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siormal 1c C-surface. Ihowcver, the inner product is somewhat arbitrary for our

=n. 1 'atiu't A1.crnatively, we could also construct geodesics on -', the 3-sphere
witfln atinpoda j oint:s identified. These approaches are probably too elaborate for

a heuristic strategy.

Heuristics for Evaluating Directlons in the Tarj~cnt Space

A basic issue is that placing a metric on a non-abelian group, such as SO(3),

is a difficult problem. We will demonstrate the metric that our planner employs,

and then show that it is adequate for this applicatoin. In particular, the metric

is adequate when applied to three one-dimensional slices of SO(3). (These are the

slices considered by the Rotate operator). Note, however, that a metric may also

be derived by representing rotations as uidt quaternioas,. it this case, the metric is

obtained by considering rotations as points on S 3 ,mbedded in 1 (Brou 19C83).

Suppose we employ rotation matrices to represent rotatioDn. (The implemented

planner uses Euler angles). If we are willing tVo tolerate singularities ir the

representation, it is often convenient. to inmntify a rota'ion ma•,'x in .50(3) with

the vector of three angles, (tb, 0, 0) which determine it. The angles (f. P, € form a

three dimensional angle spare, Q3 . The rotation raatrix r.,orrespoiidinig to (V), 0, 0) is

of course R(i'$, 0, q). (The singularit.cs induce an equivalence relation on Q:1, where

two points in angle space are equ:al when the r.,tation matriceS they d.termine

are equal). Most of the timue., the identification of 30(3) with Q,) does rot lead

to problems. However, when ws wish to comput?, directions, and Aiffercnces of

configur-ttions, it is necess,-ary to distingnuish bltv.en ( i) cud ('".

We cart state tars more concisely as follows: O(3) is a thre,.- dimensional

manifold. The mapping ,R from Euiler anglcs to rotat.ion matrices is a chart for

SO(3):-

We typically dhuscribe a rotation R(O) C SO(3) by :ts chart coordinates (V, 0, ) =

O G Q". This makes it convenient to idenltify (e with AX(o), so that in general,

instead of dealiug with tLc manifold ditrcetly, w( will work Nj,ith a chart for the

X5
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manifold. In this section alone, however, we must distinguish between the domain

and imagc of R.

We can compute a direction in W:' X SO(3) by simply subtracting two

configurations (of course the angles must be subtracted (rood 27r)) to yield a

six-dimnnsional direction vcctor. Using Ohis arithmetic, the goal direction is denoted

G -X. We will use the convention that the first three coordinates of G - X arise

from !X3, and the second three coordinates arise from Q3.

Let G = (G., Go) and X = (-VX,Xo). Since G -- X is clearly well defined

when _0 and X differ only by a tran:dation, assume that G and X differ only by a

rotation. Assume further that rotations are represented by Eulcr angles. Note that,

in general G - X is not a rotation which carries the. moving object at orientation

G into the uioving object at orientation X. llowevcr, G - X does represent the

difference in orientation, i.e., it specifies a displacement in angle space which will

carry G into X. For example, if GE = (45., 56f', 900) and Xe = (450 45', 450) tl;en

there are rotation matrices K(qG) and X.t A 6) corr esponding n o cauh oiG aand

Xo. (We use degrees, not radians in this example, since the symbol ir will soon be

used for a projection map). Note that

R(450, 50o, 9CI R(450, 45° , 45°))Z(0°, 5°, 450),

where RR' indicates coiniosItion of rotations. llowever, the path in angle space

p(") -YX o + t(Go -- A 0)M ,

(W50 450, 450) -- t(0 0 , 50, 450)

(for t E [0, 11) wii, woik, since it corresponds to the rotat.o,.al p'-th '

,Q~pt~l (Xo + I(Ge - Xa))
R ,((i45 , 45", 450) + t(P, ,J,; '

Consideriag configuration space as the product spwxc of the translatie-it ,pace

and the angle space, we s:-c diat C - X is wel, ,-li,.L'd. oi - .0 ' specifies a
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direction and . distance to be traveled iii angle space in ord.r to carry X0 into G o.

Furthermorni, along the path ftora X8 to Go, the corresponding rotations specified

by the angie space trajectory p are well defined. For all G E V:i X SO(3), we will

treat the space of directions C -- X as the tangent space Tx to R:1 X SO(3) at X.

Properly, T'- i6 the product space of the tangent space to V at Xz, and the three

dimensional angle space Qc.

We now define a map from Tx X Tx to the plane, which will function in place

of an inner product. Fiist, define the natural projection maps from Tx onto its

factor spaces:

.R53 X~-

(e - X) - Xx)

(G - X) ,- (Go - Xo).

Lcm u • v denote the standard inner product on R3, for vectors u and v. if u

and x zare pk.ojections (under 7rq) of direction vectors in Tx, we say that u and v

arc t. ra lationaliy orthogonal if u .v = 0. Let (q1, q72, qD), (WIV, w2, w3) E Q3 . Assume

tCe carch pair of angles qi and wi (for i =-- 1, 2, 3) is normalized so that

Iq -- •il _ 1800.

ýNoL. ti~at this normalization is critical). Now,. define

?-Q((ql, q,2, q3), (w1 W2, w.1)) = qlwl + q2w1 -1- q3w3.

no wil! fuPctim in place of an inner product on Q:3. We say that two rotational

directions q and .w are rotationally orthogonal if n12 (q, w) = 0.

We may now define 4x, which will function in place of an inner product on

T First, let

D)' G1-X.
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Assume that D ,,D Do, and D' are all nornialied to be length 1 (where the

length of Do is defined as nQ(Do, DO)2:. Finally,

4tx : l'x X TX Je, 2

( D, D' ) 1-1 (Tnr:,(!) . Trq:, D'), nQ (71(4D), 7ro)(D'))).

So tx yields a. pair consisting of the dot proo,'ct of the translational components

of the direction vectors, and the nq product of the rotai.ional direction vectors. If

4x(D, D') -= (0, 0), e,.,c say that D and 12' are (ri.hogonal directions in the tangent

space TX. Note that two direction5 are ortliouwnal if, and only ;f, their translational

components are orthogonal and their rotational components are orthogonal.

This discussion extends naturally to other representations for rotations. For

example, if spherical angles (Kane and Levirnson (1978)) are used, then the difference

in orientation is the rotation carrying 1 into X, tha', is, G0 - X 9 is a rotation

carrying the moving object at orientation Xe into the movii .g object at orientation

G'E. We should stress that the natural Itiemanmian inner product (Erdrnann (1984))

could be used instead of ix- '[ms would couiplicate the representations employed

in subsequent chapters. 1 x and nQ are heuristic mueasures on directions in Tx. We

will later discuss why, for our purposes.. they are good heuristic measures.

Evaluating Normals and Gradients to C-Sa.trfaee--

The local description of a C-surface relative to some subgoal is desiglcd to

address the following qualitative questions:
(i) is tire C-surface iocafiiy tanigent or lOraliy eloi)'thugotil Lu athe got al diectitotu?

(ii) Is the C-surface locally orthogonal to any rotational motion?

Recall that a level C-surface ker f is described by a real- valued C-function I.
Assurne that normals and tangen-b vectors are appropriately normalized. Question

(i) may be reisolved by examining

(((:-- X), Vf(X). (2.1))
When (2. 1) aplroact, es (0, 0,, tt S kr .f IS locally tangent tu the goal direction.

Note that (2.1) mak es ..v,,:o. f mwa p paranim¶ ers of tue for] i ,y,z, (T Z, 0 0) to real
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numbers, and hence the gradient of f,
( a' af af a df ,f')

is clearly a direction in TX.

We will also employ

WN. G- X) - 7r.:t (V f(X)) 1 (2.2a)

When (2.2a) approaches 0, we say that ker f is (locally) translationally tangent

to the goal direction. Symmetrically, when (2.1) (resp. (2.2a)) approaches (1, J)

(resp. 1), we say that ker f is locally orthogonal (resp. translationally orthogonal)

to G - X. A similar calculation yields the rotationally tangent and orthogonal

C-surfaces to the goal direction:

fQ(7,o(G - X), 7rO(Vf(X))). (2.2b)

Why (x and nq are Good Hleuristic Measures

Suppose that the rotational direction is along one of the axes. (Let. as say the

direction is €). To tell whether a C-*urface is rotationally orthogonal (or tangent)

to the € direction, we siwply examine the magnitude of which can be obtained

directly from Vf(X). This is because

af af af af
nQ(d, •r,•(v(f(x)))) = ,•,((0, 0, ), (- --- -)) =d-

In other words, the miap nQ need not be employed. Since the implemented Rotate

operator moves along the rotational axes in directions

'D E L',- +0, -0, -1-0, -0

this is the most common--but not the only - test for rotationally orthogonal (or

tangent) C-surfaces. This inforniation is used by the rotation experts to choose

rotational subgoals that move away from C-surfaces.

U,"•. •'t--U_.



Dcscription or a Search Node I!
The following information is stored at each search node. Lazy evaluation is

implemented so that some of these objects (for example, the set of all applicable

C-surfaces) may not be computed until they are required.

(i) The configuration X of the search node.

(ii) The lattice point for X, which is the unique identifier for the neighborhood
about X.

(iii) The applicability set at X.

(iv) A, the set of non-redundant constraints at X, sorted on increasing V:dLLue. The
non-redundant constraints may be approximated by the applicable constraints
having small positive (or zero) values at X.

(v) The parent node.

(vi) The From-Direction (The direction traversed from the parent node to this
node).

(vii) The sons of this node. These include "unsuccessful" explorations which did
not reach a sub-goal, or which reached a previously explored neighborhood.

(viii) The C-surfaces on which X lies which also bound C-Space obstacles, that is,
all f E A such that, f(X) = 0 and ker(f) bounds a C-Space obstacle at X.

(ix) An Explanation of how this node was reached. An explanation typically includes
the name of the local expert that planned the move, and enough information
to reconstruct the move. For example, the experts which slide along level
C-surfaces leave an explanation containing the names of the constraints, their
levels -it the parent node, and the parameterization chosen for the intersection
manifold.

r.
Much of the information stored at a search node is used to record the history I

of the planning. An expert which planned the move to a search node s will not be
applied again with the same parameters. As an example, consider the Intersection

expert, which attempts to slide along intersection manifolds, and the Greedy expert,

which attempts to move straight towards the goal. We discuss these experts in

more detail in the next section. If applied to s, the C-surface intersection expert

will not attempt to construct and slide along the same inLersection manifold

which led to s, unless it can slide in a different direction along the intersection

manifold. By recording the From-l)irection for a node, the planner can avoid

repeating unfruitful explorations. In particular, different experts can advise motion

in the same direction; thus a particular intersection manifold may point in the

1)0
.t0[ .' ,•• • ,y.••5•;•• ••,••X••3,N ••. .. , .,,•,,,.,",- ,,,:, 7',.' -.:'••,••• ,.-•,,",-, ,.. ,_ ,.• '



same direction whicb was previously (or simultaneously) attempted by the Greedy

expert. Whether successful or not, rei~xploration in this direction may be avoided by

examining the From-directions of the sons of s. An additional constraint is provided

by the F-omn-Direction of s itself: there is typically no point in exploring back in

the direction we came from. The process of leaving information for some expert

which may be applied in the future is known as "forwarding." As we shall see, the

performance of one expert can I vide strong hints as to what expert should be

applied next.

The planner computes local descriptions for the C-surfaces in A. Naturally, parts

of these descriptions will change for different subgoals. The local characterizations of

C-surfaces allow the planner to find the set of C-surfaces to which the goal-direction

is tangent (or orthogonal) as described above. When a planning direction is chosen,

these C-surfaces clearly provide strong constraints.

VWe are now ready to discuss the experts themselves. The Bumblr strategy is

also applied at each node, since it is a guarantee of completeness. In light of the

previous discussion, we will omit any discussion of the detection and pruning out

of explorations in urifriitful directions (as determined by the planning history).

We will consider the application of particular experts to a search node s (at

configuration X) which has parent so.

I

g ;N
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2.4.3. The Greedy Expert,

The greedy expert attempts to translate or rotate directly towards the goal.

The expert is neccssary as an "end-game" strategy, in ordcr to close in oil a

particular subgoal without worrying about finding the appropriate intersection

mnainifold. The Greedy expert illustrates two important heuristics: forwarding and

backing off. Suppose the greedy expert translates 'rom a parent node so to a

son s. An appropriate explanation for the move wvill be left at s. If the same

subgoal is intact when the planner explores s, the grcedy expert will not attempt

translation again. Instead, the rotation expert (see below) might be invoked. The

effect is one of translating until an obstacle is hit, and then rotating to get around

it. Alternatively, the sliding expert (which slides along level C-surfaces) might

be invoked. This coupling of experts is termed the "hit and slide" strategy (see

figure 2.4). However, the planner does not directly recurse by calling the sliding

expert immediately after the greedy expert. Instead, a suggestion is left by way ofUxpJM 1i UL~ l At, -, " 1 _.a___re n I. . ... s__e .. c ... . , . ...... ;pr p .,- , r•,Un, ....... r •5 .

expert is invoked. The exact choice for which expert is invoked will depend on

the history of planning (typically, what neighborhoods and directions have been

explored from so and s), and on the local geometry of C-surfaces about s

Suppose that all experts moved the robet as far as they could, that is, moved until

a constraint was hiL and left the robot touching the constraint. This could result in

jamming the robot up against. many C-surfaces at once. It can prove very diflicult

to extricate the robot from this logjam situation. In fact, it is usually not preferable

to move all the way up to an obstacle. Instead, we wish to detect this intersection Mx

with a planned trajectory p, and then back off from the obstacle boundary (along 11

p). Thus if p(0) -- X and p(l) = Y is the lirst intersection of p with C-Space

obstacle boundary, then it. makes good sense to move to p(O.8). This has the effect
of leaving the robot in the channel between obstacles instead of jamming it up in

corners. Of coursc, if it is necessary to move to p(.9 5 ) then the greedy and Bumble %

strategies will ultimately converge..
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Figure 2.4. An idealized illustraLior of the hit and slide strategy. Some expert moves the robot
in direction 0 until a C-surrace S is hit at X. When the plantier tries to move from X, the
sliding experL is invoked to slide along S in the goal direction.

2.4.4. The Intersection Expert

The mathematics of intersection manifolds in R3 X SO(3) is presented in

h tdThe na 'A and Afw. C-surfc in Ae-.

whose intersection manifold contains a path which makes progress towards a subgoal.

The path may be a pure ti anslation or a pure rotation. We will begin by describing

the process of finding a translational path which slides along an intersection

manifold. First, all C-surfaces in A which are nearly translationally tangent to the

goal-direction arc selected. Wc select the first few of these which have the smallest.

value at X. Ideally, these are the closest non-redundant constraints at X. Call

this set A'. The explanations for the moves from so to s and from s to any sons •

of s will yield a set of previously explored intersection manifolds. (An intersection

manifold may be identified by the name of the intersected C-surfaces, their levels,

and the chosen parameterization). The C-surfaces in A' are pairwise intersectcd

9-



(see chapter 4), after appropriate pruning as indicated by previously explored

intersection manifolds. Each ir.tersection manifold (ker f) fl(ker g) is constructed. A

translation or rotation vector Vf,v is chosen such that the path pf,,(t) = X + tf,-

slides along the intersection manifold of the two level C-surfaces ker f and ker g

at X. The intersection expert then selects the direction j,, ::.fiich is closest to

the goal direction (and which is not pruned out by considecation of the planning

history). Suppose ýfq is a pure translation. The looa operator Translate is called

to ITIOVe from X in direction Ofg until a C-surface is struck4 or the point on the

trajectory pf,, which maximizes proximity to the goal is reached.

Now, suppose vfq is a pure rotation. Our experimental implementations have

intersected two C-surfaces kerf and ker g to yield pure rotational paths sliding

along the intersection manifold of kerfnkerg (see chapter 4 for the details). In

Proposition (4.4), we demonstrate that these paths may be approximated to an

arbitrary resolution by successive applications of the local operators, with only a

linear increase in the narnbcr of path scgmýnts as the resolution grows finer. We

have also found it useful to approximate the rotational path along the intersection

as follows.

Given two level C-surfaces ker f and ker g at configuration X, we wlsh to I
choose a direction from X tangent to both. For example, if the configuration space

were isomorphic to W, then ker f and ker g would both be two dimensional surfaces

in 3-space, and this dircction would be Vf(X) X Vg(X). (Where X denotes the

standard cross product on R3). In the talngcet space to a six-dimensional C-Space,

there are typically four such tangent vectors at X which arc tangent to ker f and

ker y. We will demonstrate an operator analogous to X which produces one such

tangent vector in a natural way. (It is also possible to solve for all such tangent

vectors).

We begin be dcefiniug an extended product on the tangent space to R3 X SO(3)

at X. Let V -(VM, Vo) 7 Tx be a tangent vector at X. We mnay think of V and

V(o as the translational and rotational components of a six-dimensional velocity

"AI1hough we a. lso vnIliloy the backiiij; ,I1T bviiri-tic here.
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vector V at X. if W -- (W,., Wo) E Tx is another tangent vector at X, we define

the extended product of V and W by

V x( W = (VI x W1, ve x We).

The cross products on the right hand side are simply the standard three-dimensional

cross product. (See below (2.3) for why this makes sense for the rotational

components, Vo X Wet). If V = Vf and W = Vg then V ;( W is tangent to both

ker f and kerg at X. Since ;< only operates on tangent vectors to R3 X SO(3)

which have the same point of application, we will never have reason to confuse it

with X, which can only be applied to three-dimensional tangent vectors.

Let f, g C A' be C-functions generating the C-surfaces ker f and ker g at X.

Observe that the tangent vector Vf(X) ;. Vg(X) is tangent to both kerf and

ker g at X. We can locally approximatc a pure rotational trajectory sliding along

the intersecliuza of J and y by a path in direction

rG(Vf(x)) x -0 (vg(X)). (2.3)

Note that this is well defined since

"19 • ay o' Afdfdffdf o- d' odo "_

The differential rotations from X are isomorphic to a three dimensional vector

space, and hence the cross product

af af f ag g i(-X), V (X), .3 -(x) 'Mo, ( ), () M

is also well defined, and guaraiteed to be tangcnt to ker f and ker g at X. The

Rotate operator can be called in succession on thr- largest comrponcnts of (2.3)

in order to approximate the sliding trajectory. Of course, it is ako possible to

re-evalhate the tangents after each step. N.
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2.4.5. The Sliding Expert

The sliding expert attempts to find a path sliding along one level C-surface

at X, which makes progress towards the goal. The sliding expert can be thought

of as a less constrained version of the intersection expert. The sliding expert tries

to choose a C-surface in A' to which the goal-direction is (almost) tangent. As we

will see in chapter 4, it is possible to choose a parameterization along a C-surface

which maximizes progress. This path along the C-surface can then be realized (at a

desired resolution) by successive applications of the local operators. However since

there are many paths from X sliding along a C-surface at X, we need to develop

a good heuristic strategy.

Our motivation is as follows. There are an uncountable number of paths from

X sliding along a C-surface at X. We could maximize a directional derivative at

X to choose - locally optimal search direction. This woold work once; however,

this would nut solve the problem of state: it is necessary to partition the set of

paths into "neighborhoods," and to mark a neighborhood of paths as explored

when a representative from that neighborhood is selected and attempted by a local Pý"ua"

operator. In principle, a computation involving homnotopic equivalence classes is

possible (see Donald ((983a) and appendix III). However, this requires a global ,

computation in C-Space. In particular, the image of all paths in an equivalence

class may cover R' X S0(3), even if thcre are several classes. We wish to find a

way to partition the paths from X into neighborhoods, sample a canonical element

fromr the ighborhod and evaluate it. as a lnca! move in the. P.nrch.

Given a C-surface normal Vf at X, we wish to choose a direction ,' sliding along

the C-surface ker f which maximizes progress to a subgoal. Let B (•, B, , V, 0, -)

be the obvious orthonornial basis for the tangent space to R' X SO(3), and

Next, we form a set or vectors orthogonal to Vf(X) as follows:

D {Vf (X)}®:(8U-b)
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where P( Q (p ) q lP E P, q E Q}. All of these vectors are orthogonal to

kerf at X. We then choose the direction f E D which maximizes x(DX,(G- X)),

where the G - X is the goal direction. If 4ýx is the heuristic product oil tangent

vectors insead of the single-valued Riemannian inner product, then both components

of the image of (Ix should be maximized. In chapter 4 , w- will see that it is

possible to comply as closely as desired to the C-surface ker f while traveling in

direction 0.

To understand this strategy, consider the following example: Suppose we

employ a basis BV which only spans R1. Then the expert will choose the available

translation sliding along the level C-surface which maximizes progress towards 'he

goal. Once the direction 0 is chosen, the Translate operator is invoked to slide

along the level C-surface until a constraint is reached.

There is no need for the basis D to be orthogonal; this was merely adopted for•-••Vi

the sake of intuitive development. The ba-;i provides a sampling of the function

space of paths compliant to the C-surface about X. __-

A Conjecture on Completeness using Extended Spanning Sets

By using the basis B, we obtain a 12-way sampling of the space of directions

orthogonal to Vf at X-in other words, there are 12 vectors in D. Imagine using

another set of vectors, B9', which is larger than 3, to construct D. Then D would

provide a finer sample of the space of directions, since more directions would be

sampled. In principle it should be possible for a sample to be complete at a given

resoiution. We formalize this idea as follows:

A spanning set for a space V is a set of vectors which spans V yet which is

not necessarily a basis. A spanning set is a basis for V which has been extended .-

"by adding other vectors. We conjecture that there exist certain spanning sets

which might be emlployed to construct a complete planning algorithm without the

I Bumble strategy. What constitutes such a complete spanning 6(t!? The analogue of
m4

reuolutic t for an arbitrary spanning set D4 would consist in (1) (lhe cardinality of

the spanning set, and (2) th, uimiforni'ty of distribution of i,he vectors

,•..A A '-



B+ U-B•

about the unit Pive-dirmiensional sphere S5 in the tangent space at X. The greater

the number of vectors in the spanning set, and the more uniform their distribution

about. S 5 , the finer the resolution of the planner. The development of such a planning

algorithm reqaire.9 surmounting additional theoretical and technical difficulties.

%
Lim,
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Figure 2.5. An idealized illustration or the hit and rotate strategy. Some~ expert moves tile robot
in direction iD until a C-stirface S is hit at roarifguratioii X. WVheni the plantier tries to plan a
rnovc from X, the rotation expert is called to calculate a rotation away fromj S (in direction )
From the new configuration, directioo ý can be pursued again.

2.4.6. The flotation Expert

The rotation expert is built on the rotational operator 1?ot ate, and is designed

to handle some of the special problems of moving through rotation space that are N

discussed in chapters 3, 4, and 5. The rotation expert might be called to accomplish

a simple rotational subgo)al, or in conjunction with some more elaborate strategy.

In particular, when a translational motion terminates by striking a C-surface,

forwarding messages are left for both the sliding expert and the rotation expert. 1
The former has been discussed as the "hit and slide" strategy (figure 2.4); the latter

is known as the "hit and rotate" technique (figure 2.5).

The first problem that the rotation expert must deal with is the "wrap around"

in rotation space. A subgoal 0() Can be rcached in directions +-0 and -0, although

typically one is "shorter". In conjunction wit~h the planning history, the rotation

NI
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expert, on successive applications to the same node, can develop strategies for

rocking back and forth on a stice of rotation space.

The Rotate operator is more constrained than the Translate operator (in that

it can only be applied in ±+, ±.), and ±'k). lHcnce the rotation expert must have

a method for approximating rotational trajectories (specified in angle space) which

are linear combinations of the rotational basis vectors, such as

ýj -- ai + b 0 + c(2.4)

for sonic scalars a , b, and c.

In terms of the completeness of the algorithm, there is no need for a rotate

operator in direction (2.4) (provided a path along 0 lies in open sets of free space).
i ~~In chapter 4, we show that a continuous path may be approximateci as closely as o

desired by a sequence of moves along the rotational axes, and that the n ,mbee

of staggered path scgmcnts required grows only iineariy as the resomhiu buofnesV

finer. In practice this use of the restricted rotate operator has proved adequate

in our path-finding experiments. However, it is heuristically useful to realize such FIN

paths as accurately as desired, since this allows higher level experts to suggest

arbitrary rotational trajectories. Given such a trajectory, the rotatiopal directions

are ranked by magnitude of change, and the unexplored direction of greatest change

is first attempted. On failure, or upon successive applications of the rotation, expert

to the search node, the other directions in (2.4) will be attempted. This process V

leads to the approximation of arbitrary pure rotations by a staggered sequence of 00

rotations along the axes. If the extent of each rotation is limited, the approximation ".

can be made arbitrarily fine. To approximate motion in a direction such as (2.4), the

planner actually attempts several of the directions simultaneously, which results in

a spanning "box" of rotational moves about the idealized trajectory (in the absence -A

of obstacles).

Suppose a, b, and c in the idealized trajectory (2.4) are positive. This yields N,
a set of positive, or "forward" rotational directions, and a set of "backwards"

rotational directions which can attain the goal. Which directions are Forward and
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which are backward depend upon the distance (in the vector parameter space V)

of the goal from X, that is, on 7ro(G - X). For example, if G6 - X0 is negative and

smIall, then +± will be a backwards direction, and -ý will be a forward direction.

The rotation expert develops and ranks these sets of forward and backward

rotational directions. By examining the planning history and the local geometry of

C-surfaces at X, these sets of directions are ',urn pruned. In particular, local

C-surfaces that would block a particular rotational motion arc detected. For a

direction i, this is done by examining the magnitude of the directional derivative

in 0. The importance of such an impediment is then heuristically ranked by the

closeness of the C-surface at X. Special consideration is given to C-surfaces which

have a history of proving troublesome. For example, when an expert runs into a

C-surface, the reason for stopping is left as part of the move explanation. If the
rotation expert is invoked as part of a "hit and rotate" strategy, then we must

ensure that the planner tries to rotate away from the C-surface(s) which blocked

progress. The rotational direclions which pnint, away from C-surfsreq rnny he foundr

by examining Vf. The process of determining the rotational constraints from the

local geometry of C-surfaces is closely related to our earlier discussion of detecting

rotationaliy orthogonal C-surfaces.

Thus the requested rotational trajectory and rotational goal provide a set

of desired rotational motions. The planning history supplies a set of rotational

constraints, and from the local C-surface geometry can be inferred a set of

preferred and prohibited motions. The constraints, preferences, and prohibitions

are intersected with the forward and backward desires. This yields a set 0f rotational

directions which will be attempted using the Rotate operator. Depending on the

kind of invocation, the rotation expert may apply the Rotate operator up to I,
sonie fixed number of times -this is particularly useful when it must attempt to
approximate an idealized rotational trajectory which is a linear combination of the

basic rotational directions.

Canny (1984) has recently extended the Rotate operator for directions such as

eq. (2.4), corresponding to uniform rotation.

A,

, .u\ ,
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'.Fure 2.6. An ideali;ed illusLrat.ion of the around ixpert. When jurogrcss for thie nioving object

in the goal direction 6 is blocked, the expert aLtIiipL9 to rind a C-surrace which is roughly

orthe,.gonal to 0. A sliding motion (either 6 or -i,) is then planned along this level C-.trface
(around thle obstacle). The rewulL~ing search node is then exp~anded.

S~2.4.7. The Around Expert

The around expert attempts to circumnavigate obstacles by sliding around

their boundary. An idealized illustration of the around expert is shown in figure 2.6.

The around expert is similar to the sliding expert, except that instead of attempting

to find a C-surface which contains a path towards the goal, the around expert :.

searches for a C-surface which is (roughly) locally orthogonal to the goal direction.

Next a path is pianned sliding along this surface in a direction ý' orthogonal to the

goal direction; the path is attempted using a local operator. Typically, this motion

will result in a search node s' which is farther from the goal than the parent node,

s. Ordinarily, s' would not be explored soon, since other search nodes would appear

more promising to the planner's bcst-first strategy. In order to ,ive the around

strategy a chance, the around expert explicitly places s' at the front of the search
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queue and calls the planner recursivcwly.

The around expert, can also invoke the intersection expert. Recall that the

intersection expert normally tries to construct tangent intersection manifolds which

contain paths towards the goal. However, when cailed from the around strategy,

it can construct intersection manifolds locally orthogonal to the goal direction. To

construct the intersection set of locally orthogonal level C-manifolds, we perform a

pairwise intersection of C-manifolds locally orthogonal to the goal direction at X.

2.4.8. The Suggestor

The suggestor is a strategy for proposing good subgoals in configuration space.

As we saw in Donald (1983a), one of the problems with local operators even if

they are complete (that is, their closure covers configuration space), is that without

good subgoals, they may take a long time to converge. The suggestor is a heuristic

strategy for setting subgoals in C-Space.

Flist, a • r..y Lattice i;- thro,.. . , _e C.-p . This; lattice ;i- then

searched for a sequence Q of free configurations (not a path) stepping through the

lattice to the goal. If no such sequence can be found, tfhen configurations on a

promising partial sequence are employed. These configuratiots may then he set as

subgoals, and the planner can be called recursively. The configurations Q represent

intermediate planning islands of safz configurations. If paths can be found between

these configurations, then. the find-path problem is solved. Otherwise, expanding
from any partial pAOths found can altso prove useful, in that uml~iano111Ping islands •.<

effectively distribute the application of local experts and operators over more of
configu ration space. i

The suggestor complicates the connectivity of the explored neighborhoods IL i

graph. The ability to explore arbitrary subgoals and suggested paths requires

mote complicated bookkeeping for neighborhood exploration: we must employ the ",. _.

connect strategy, in order to know when partial paths link up. If partial paths

not rooted at the start neighborhood are permitted, then the graph of explored

neighborhoods will not necessarily be connected, and the mark strategy will fail (the

mark strategy constructs a directed, spanning tree for a connected, rooted graph
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Figure 2.7. A patli which was found ushiig local experLs. Thib find-pa•h problem is very ea.sy (it.

is used as an example in chapter 1).

of explored neighborhoods). Happily the connect strategy will succeed, since it is

defined on an arbitrary graph. An algorithm fox the connect strategy is discussed

in section 2.1.2.
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Listing Is The log or expert explamations For the path in figure 2.7.

(find-path *1l *gi)
Verifying the start and goal points...
start : (0 0 0 1 1 11), goal : (-8 10 0 00 0).

Starting search, boos...
Exploring (0 0 0 1 1 11)...
Local Expert: I tra:tslated straight towards goal, reaching ((-i 1 0 1 1 10))
Exploring (-I 1 0 1 1 11)...
Local Expert: I Slid along a level C-Manifold, reaching ((-8 1 0 I 1 11))
Exploring (-6 1 0 1 1 11)...
Local Expert: I translated straight towards goal, reaching ((-6 10 0 1 1 11))
Exploring (-6 10 0 1 1 11)...
Rotation-Export: Found 0 guiding conutraints on rotational motion.

Rotation-Expert: Internected Rotational Constraints with desired
rotations yielding possible motions in
((MINUS PHI) (MINUS PSI) THETA).

Rotation-Expert: I am trying to rotate in (PLUS THETA) ...
Local Expert: I rotated to reach ((-G 10 0 1 1 0')

Exploring (-8 10 0 1 1 0)... NO*
Rotation-Expert: Found 0 guiding constraints or. :otational motion.
Rotation-Expert: Internctred Rotationan Conn-traint-- wit.th Ann!red

rotations yielding possible motions in
((MINUS PHI) (MINUS PSI)).

Rotation-Export: I am trying to ritate in (MINUS PHI) ...
Local Export: I rotated to reach ((-6 10 0 0 1 0))
Exploring (-8 10 0 0 1 0)...
Rotation-Expert: Found 0 guiding constraints on rotational notion.
Rotation-Expert: Intersected Rotational Constraints with desired

rc-tations yielding possible motione in

((MINUS PSI)).
Rotation-Expert: I am trying to rotate in (MINUS PSI)
Local Expert: I rotated to reach ((-6 10 0 0 0 0)) S
Explorirg (-6 10 0 0 0 0)... IP
([uccess!] Saving and Drawing final path...

Back to Lisp Top Level in Lisp Listoner 2

IM
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Figure 2.12. View 11: (frame 19), The fihal tonfigngration.

2.5. E xamples of the Local Experýs in Use -

In figure 2.7, -we show a very simple example of a path found using local

experts. Listing I shows a log of the expert explanations for eadc uove.

The "Thor's Hammer" example in cbapter 1 was produced by disabling all

experts, and employing only the Bumble strategy. (Please refer to this figure). In

the accompanying figures (2.8-13), we Ehow a path found by a strategy comprising

all the experts described above. The solution path is very different, and tends to

slide around obstacles instead of finding convoluted paths between them.

Figures 2.14-21 show the solution for a find-path problem in a cartesian

workspace. A cartesian wvorkspace is a bounding box beyond which the reference

point may not translate. However, the bounding box imposes no restrictions on

rotations. The Movers' problem in a cartesian workspace is similar to the motion-

planning problem for cartesian manipulators, and the L-shaped object may be

thought of as the (wrist and) payload. First, we show the reference point on

the L-shaped object. Next two views are presented of the path found within the

workspace, around a large, diagonally-placed obstacle. View (II) is a view from

the 6ide; view (I) is a view frorn the top. Only the back faces of the rectangloid

workspace are shown. Since the rotation from frames 13 to 14 is very large (> 7r
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Figure 2.8. View 1: (fran-" 1-9). Thlm.c 18 rrames Ahow a solution path for the "Thor's llarner"
Movcr'm problem. Local exr[,-.ts (a.s described in this chapter) arc employed to slide the moving
o!iject along level C-Manrife d.4. Throe views are showti. The finad coi•ligtiration is only viibhle iii
view I1 (ligure 2.12).
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Figure 2. 11. View 1lh (frane's 10 18). ,

Ipo

.I



m

Figurc 2.13. View !11: (A detail or rra2..es I through 6).
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The reference point an the L-sheped moving object

Figure 2.14. The rercrence point on the L-shaped object.

in the -ý direction), a detail of the rotation is also shown.

2.6. Path Planning versus Discrete Intersection Detection

imagine a brute-force planner which discietizes coxifgu ratior, space, placer the

robot at every point in the discretization, and tests for intersection. This would

yield a discrete set of configurations where the robot could be placed. Alternatively,

the tests could be structured in a search. As stated so far, this is not collision-free

path ph-nning. Path planning ensures that a path exists between each configuration

on the path. It has been argued that if the intersection-detection is done at a

fine enough resolution then a path will have been effectively found. At a given

resolution, it is possible to bound the size of the intersection between the robot

and any obstacle which can occur between intersection checks. This bound grows

smaller as the sampling of the space grows finer. By growing the real-space obstacles

by this bound, it is possible to ensure that no collisions occur between discrete
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Figure 2.15. Solution Path, View (11), framnc~ (1 -0)
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Figure 2.19. Solutioti Path, View (1), rr;tIFIeS (10-18) N .
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Figure 2.21. Detail of the rotation from frames 13-14.

intersection checks (Gouzenes (1983)). Of course, if the resolution is insufficiently

fine, then the obstacles may be grown so much that no path can be found.

For gross motion planning in an uncluttered environment, this approximate 4

method may perform reasonably well. In complicated environments, however, the

resolution will have to be fine in order to ,ensure that paths are collision free

without growing the obstacles so much that no path can be found. We will

compare the asymptotic complexity of the discrete intersection method with the

Rotate operator. (The Rotate operator is the most complex local operator). The .,

fundamental observation is that the complexity of the discrete intersectioit method

varies linearly with the sampling resolution, whereas the complexity of the Rotate

operator is independent of (any) resolution. This is because our discretization is

quite different: a lattice is thrown on the space in order to record the state of the

planner and the connectivity of the explored neighborhoods.
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Consider the following. Suppose X and Y are configurations on a rotational

trajectory in direction q. Suppose further that the robot is composed of m convex

polyhedia containing k generators each, and that there are n convex obstacles

containing j generators each. The number of faces on a robot polyhedron or an

obstacle polyhedron is O(k) (respectively, 0(j)). To perform one intersection check

(at a single configuratien) for one robot polyhedron and one obstacle polyhedron

requires time O(log2(j + k)) (Dobkin and Kirkpatrick (1980)). Thi5 theoretical

intersection algorithm has not yet been implemented, but we consider it since it

is the fastest known. To perform a check (at one configuration) for the entire

robot against the entire obstacle environment requires time 0(mn log 2 (j + k)). Now

suppose that the path segment [X, Y] must be sampled i times for the quantizing

intersection checker. This requires time

0(imn log 2(j + k)).

In chapter 5, we show that our planner's Rotate operator could determine whether

there exists a path from X to Y in time O(N log N) (where N is the number of

(-surfaces). In chapter 3, we show that N =-0-(mnjk). Hence the complexity for

Rotate is

O(imnjk log(mnjk)) := 0(mnjk(logrn + log n + logJ + log k)). v

Rotate ensures that there exists a path from X to Y without growing the real-space

obstacles, anid does not involve a resolution factor i. Holding k and j fixed, the

relative asymptotic performance of the quantizing intersection def !ctor and the

Rotate operator will depend on whether or not

i > log(mn).

The constants 2, j, and k will depend on particular workspaces and find-path

problems. However, we believe that in order to be reasonably sure of the safeness
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of a path between configurations without growing the real-space obstacles too

much, i may have to be quite large. This is especially true in reasonable sized

environments. So as mn increases, the workspace becomes more crowded and/or the

robot becomes more complicated, and the sampling rate will have to be increased.

We think it unlikely that the sampling rate will grow only logarithmically with

the workspace complexity. Moreover, the theoretical O(log 2(j + k)) intersection

time for the Dobkin and Kirkpatrick (1980) algorithm assumes that the solid

models of the m robot polyhedra are precomputed. (If the solid models must be

computed for each configuration, then this will take O(km) additional time per

sample point). In addition, for a polyhedron with k faces, O(k log k) preprocessing

time is required by the algorithm (for each intersection check), which would

yield an even higher complexity for the discrete path planning algorithm. At this

stage, since the algorithm is unimplemented, it is ua'clear whether some sort of

lazy evaluation, parametric representation, or efficient precomputation could be

employed to reduce the complexity of iterative application of this intersection test.

Most implemented intersection detectors that are reasonably robust have time

complexity O((j + k) log(j + k)) or O((j + k) 2). However, it is pOsible to employ

minimum distance checks, or O(j + k) intersection checks in some cases.

Summary

In a practical planning system, there are, of course, other considerations. For

example, our employment of the Rotate operator requircs time to update the lattice.

The main point is as follows: on a lattice of spacing d, to verify the safeness of a

path of length di, the discrete intersection method requires at least time O(imn),

whereas the Rotate operator requires time O(mnlog(mn)). The discrete method

actually does not erisure safeness, but merely that the intersection "size" is no

greater than some function of d.

Competence versuis Performance

We have shown that tile relative performance of the two algorithms will largely

depend on the constants in the problem. For gross motion in uncluttered workspaces

the discrete intersection algorithm will probably perform better. In complicated,

crowded environments, or in problems requiring motions close to the obstacles, the e,
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required sampling rate will probably be prohibitive. In addition to the question

of p.erformance, we should also mention the issue of competence. (In linguistics,

competence refers to the knowledge base, and performance refers to how well it is

used). The representations we develop in subsequent chapters are applicable not

only to the find-path problem with six degrees of freedom, but also to the class of

geometric planning problems described in chapter 1 (for example, fine motion, and

planning with uncertainty). It is clear from previous work that these problems are

within the competence of the representation we develop for •R X SO(3) (Mason

(1981), Lozano-PNrez, Mason, and Taylor (1983), Erdmann (1984)). At this point we

have no indication that these problems are within the competence of tile discrete

intersection method. (Find-space, however, can be accomplished using discrete

intersections).
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3
Questions of Representation: C-functions and Applicability

Constraints in a Six Dimensional Configuration Space

In this chapter, we first present a formal frar, ework in which several open

q..st i;ns about c-nnfguration space constraints may bo r..o.ed..1 This framew..ork

has been discussed informally in the first two chapters. We then procced to. construct

and prove a set of theorems about the domains and domain topology of C-functions

for the classical Movers' problem with six degrees of freedom.

Thesc theorems allow us to define the applicability constraints on C-functions for

the Movers' problem in W X S0(3). Every C-function characterizes a constraint on

motion only within a certain region of rotation space. Determining what constraints

are applicable at a given orientation (or range of orientations) is of fundamental

importance to the mathematical framework for the spatial planning problem: in

order to plan using constraints, we must know where (at what orientations) these

constraints are applicable. Recall that each C-function is generated by a. pair of

boundary cells (a, b), where a lies on the boundary of a moving polyhedron and b on

the boundary of art obstacle polyhedron. Put simply, the applicability constraints

determine what boundary cells a and b can interact at a given orientation.

3.1. I)cfinitions and Conventions

Let. A denote any rigid, convex set. A(O) denotes A rotated to orientation 0.

Formally, if' 0 is an orientation, and R(0) is the corresponding rotation operator,
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then AM9 denotes R(E)) applied to A. As a kind of shorthand, we refer to A(O) as "A

at orientation 9," or "A rotated to orientation 0." For example, ifP' is a face, then

F(O) denotes F at orientation 9. P's normal, AT, rotates with F', and is denoted

N(O). We assurnc face normals arc outward-directed from thc polyhedra they

bound. We will in general use A to denote a convex moving polyheodron, and 13 fo: a

convex obstacle polyhedron. If e,, is an edge of A and mid(e,,) denotes its midpoint,

then mid(ea,(9)) denotes its midpoint at orientation 9. At this point it is not

convenient to commit ourselves to any pai Licular represenitation for 3-dimlensional

rotations. However, the reader may without essential loss of generality interpret

v(9) (for v E O as the rotation matrix R(0) applied to the vector v, where R(E))

might be paramneterized by Euler Angles. Since R(O) is an ortlionorinal inatrix,

[)Z()J-l==[)Z(()]T can be employed to rotate a plane which is represented a.s a

4-dimensionial vector. This operation yields the rotated normal N(O) of course (see --

Paul (1981)). However, note that the results of this chapter are independent of any

particular representation of' rotations, and that R(E)) is properly a generic rotation

operator. u - v denotes the standard inner product on R`' of u and v. If u and v are

complicated expressions, however, we will use the notatioin (u,v).

Thle six dimensional configuration space V X< S 0(3) is formally defined in

chapter 2. X will denote a configuration in this space. We will identify 0 with

R(O) and write 0 C SO(3). Writing X = (x, 0) makes explicit the translational

component of the configuration (x) and the rotational comnponent (F) or R(0))).

19 denotes the boundary operator. F or example, if.[, is a face on a pollyhe iron

A, then O91 denotes the ring of edges which bound I,. d1B denotes the face*s of B,

ae for an edge e deitotes e's vertices, and so forth. The coboundary opJerator is the Z

dual of the boundary operator and is denoted 6. The (.obouridary or' a vertex i~i the K

set of edges incident there; the coboundary of an edge are tht: facest which thle edge

bounds; and thne coboundary of a face is Ohc. zero. one, or two sohlIds it bounds. In 1H*1

chapter 5, ve provide a formnai derinition of boundary and cq:bOnindary u-sing Ohe

chain groups; alternatively, see Ilockir-g Mnd Youn~g (061) or Cibtin (1,97'?).

We denote the faces, edges, and ve~ticcs of a polyhu~drota 1-1 by faces(H1), w11

edges(B), and vert(13), rc~spectively.
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If S is a set then i(S) dcnotes its interior, and rS its closure. P-S :i(S) U aS.

We denote the classical Movers' problem with six degrees of freedom by 6DOF.

3.2. Representing Constraints in Configuration Space

Lozano-PNrez (1983) showed that the C-Space obstacles can be represented as

an intersection of a finite number of half-hyperspaces,I where each half-hyperspace

is represented via a constraint function of the form

Z3 X SO(3) - R

where the sign of fi(X) determines whether X is inside, on, or outside the C-Space

obstacles. However, when rotations are allowed, each constraint function is valid,

or applicable only within a certain region Ai of the rotation space:

fi : W,• X Ai --+ R (Ai C S0(3)).-, :

We call such a function fA a C-function. We consider the robot and obstacles to IN

be modeled by the (possibly overlapping) union of convex polyhedra, and define
a boundary cell to be a face, edge, or vertex of such a polyhedron. C-funtctions•'i

model ccnstraints on motion generated by pairs of cells (g,,, gb) where g,, and gb are

boundary cells on the r'obot and on an obstacle, respectively. Lozano-l'6rez (1983)

identified three types of interactions: (face,vertex), (vertex,face), and (edge,edge),

which to preserve tradition we shall term type (a), (b), and (c) constraints. Ihowever,

dhisc intcrctions can only occur in certain orientations; for example, it is easily seen

that althoiuji iwo cuboids generate 144 type (c) constraints, at any fixed orientation

only certailn e.I.eF can interact and hence only certain type (c) constraints are

applita.bl:. 'lie, region of rotation space where a C-function fi is applicable is it's

apl.ica~bilit, r-gion, Al. Thc domain or fi, then, is UP X .

For 0h1.: two.dimI:zisi•onal Movers' problem, the rotation space is the 1-sphere I

;aId the applicabilily e'gions Ai are simply sectors on S'. While Lozano-I rez

i. s1' [1 ovilg ,hiJ I ;ul, ,b . ,M k rV'lC('VInt(d :L ov'rlappil h, ii -t o1coivcx polyhedrm. P%
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(1983) was able to define the form of C-Space constraints fi for 6DOF, previous

work has not been able to formulate the applicability regions in SO(3).

We begin by defining CO C WX X S0(3), the space of forbidden configurations:

CO ={x IVc(x)} (1)
a

where C,, is a constraint sentence (see Brooks and Lozano-Per6z (1983)). a is indexed

by C-Space obstacles. For each C-Space obstacle 0 n, C,, maps a configuration X

to truc or false, depending on whether X is inside 0 ,. (1) states that if X is inside

any C-Space obstacle, then it is in CO.

For X = (z, 0),

Ca(x, 8)-- A(0 C Ai =ý f1(x, ) • o). (2)
VIM

Let us parse (2). The index i ranges over the set of all C-functions { fl,...,f, }A

which define the C-Space obstacle 0 .. We call such a set of C-functions a family

of C-functions. This family is generated by considernrig pairwise interactions of

features on the boundary of A and features on the boundary of B, where A is a

convex polyhedron on the moving object, and B is a convex obstacle polyhedron.

For a two dimensional example, refer to figures 1.29-32 (chapter 1), which illustrate

an obstacle polygon B with four vertices, and a moving polygon A with three

vertices. For these two polygons, the family of constraints generated corresponds

to all possible interactions of their edges and vertices:

family7 ,)(A, B) (faces(A) X Vert(fJ) Uvcrt(A) X faces(B))

Each pairing, for example (el,vi), generates exactly one C-function fi. In three

dimensions, a family of C-functions corresponds to a set of constraints resulting
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from the possible interactions of one polyhedral component of the movi-ig object,

and one obstacle polyhedron:

f amily3D(A, B) =- (f aces(A) Xvert(B)) U(vert(A) x f aces(8)) U(edges(A) X edges(I3)).

Of course, in both two and three dimensions, at a given orientation, only a subset of

this family is applicable. For each C-function fi, there is an associated applicability

region A•. Equation (2) for Ca can be parsed as follows: for a configuration X, for

each C-function fi such that X is in the domain of fi, fi(X) must be negative-valued

(or zero) for X to be inside the C-Space obstacle 0 ,. To determine -whether X

is in the domain of fi, test whether the rotational component of X is within the

applicability region Ai.

Next, we define

F = 0 3 X SO(3) - CO -

to be the space of free configurations.

Now, for each C-function fi, Aj C SO(3) is the corresponding portion of

rotation space where fi is applicable. We construct Ai as the intersection of a set

of half-hyperspaces on SO(3):

Ai { 1 E. .30(3) 1 A(uime Ž ) } (3)

where gi : SO(3) -4 R is an applicability constraint function (ACF). A C-function

fi is said to be applicable for a configuration X = (x, 0) if E E Ai. hi this chapter,

we wil' derive, and prove, the form of the ACFs. Geometrically, the applicability

regions Ai are complicated three dimensional manifolds (with boundary) on the

projective 3-sphere. Their boundaries are the two dimensional manifolds kergj. (U

indexes over the set of functions used to construct Aj. There are typically three or

four g3 , as we will see later). 12'?
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The form of the applicability constraints was heretofore unknown. Many of

the representational and algorithmic issues for geometric planning problems with

six degrees of freedom rely on a correct formulation of the applicability constraints.

With these advances, however, the mathematical framework will be complete, and

we can construct the planner of chapter 2 which exploits the geometry.

The work of Brooks and Iozano-Pcr6z (1983) dealt with surfaces in the C-Space

R2 X S', whi.ch are called C-surfaces. The obvious extension of this concept for

6DOF is a C-manifold in R:. X S0(3). For a C-function fi we define a level

C-manifold to be the set of configurations X where fi is applicable and fi(X) =- 1,

for sonic level t. Thus a level C-manifold is the level set fi-[(e). Of particular

interest is the C-manifold

ker f = f1'(O) = {X I f 1(X) = 0),

which contains a boundary patch of a C-Space obstacle. Since in the literature,

C-manifolds of this form have been called C-surfaces, we shall also employ this

term.

We now define paths in C-Space. Given a start configuration 3 and a desired

goai configuration g, a successful collision-free path is a continuous function

p: 1' -+ PP X SO(3) suh that p(O) = s, p(l) g= , and p(I') C P'. I' denotes the

closed unit interval, [0, 1]." "

3.3. The Geometric Interpretation for C-functions

Considcr the interaction of an obstacle polyhedron B and a moving polyhedron

A, where both A and/ 8are convex. Let fp be in the family of C-functions generated

for A and ). fl, models a constraint on the motion of A. For example, ji, might be

generated by considering tle interaction of a face of A and a vertex of B. For a
Sgiven orientation 0, the projection into •,•'or any (applicable) C-manifold fp-'(0) •

is a plane corresponding to a face of the polyhedron resulting from the Miukowski

sum, of QA and B, that is,
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BQ A(O) ={ b+a(O) 1 bE J3,a COA}

where a(4) denotes vector a rotated to orientation E and OA = {-a I a E A }.

(Note that in constructing QA(O), the "negation" takes place before the rotation).

B D A(O) is the projection into R3 of the C-Space obstacle at orientation E. In

effect, we have parameterized the plane equations of faces of B eA(O) by e). Here

is the form of the parameterized plane equations derived by Lozano-P6rez (1983):

ai(O) is a vertex of GA(e) and bj is a vertex of B. Recall that the equation of

a plane in R3 can be expressed as { x I (N, x) = (N, q) }, where N is the plane

normal and q is a reference point known to be on the plane. Then C-functions take

the form:

fAv(, 0) (N(e), x) - (N((), (aiCO) + ba)) (4)

where a: is a point in R3. N(O) is the real-space component of the C-manifold

normal at orientation 0, and is defined as follows: for a type (a) C-function,

N(O) is the normal of a face of eA(O). For a type (b) C-function, N(() is the

normal of a face on B, and hence is constant.. For a type (c) C-function, N(E) is

the cross-product of an edge on B and an edge on GA(O). Furthermore N(E) is

normalized to a unit vector when it is non-zero.

T hC gCOMetric Sigli•,CaCe of fpta, 0'), is 1now U1eaL. The value of f. represents

how far the (reference) point x lies above the plane of a face in the E-paraineterized

Minkowski solid. (Assume (x, 0) E F). When the projection of x falls on the fp-face

of the Minkowski solid, the mctric provided by fp represents the translational

distance to a collision. When the projection falls outside the face, the value of fp

represents the translational distance to the plane of the f l,-face. Hence even though

there is no convenient way of talking about distances between configurations in

K3 X SO(3), we can employ the values of C-functions as a metric oi the distances
of the nioving object from obstacles at any configuration. 'T'his metric will become

im portant in chapter 6. ,_12
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3.4. Redundant Constraints

In chapter 2, we gave an informal definition of a redundant constraint (see

figure there). We now give the formal definition of a redundant constraint for

a configuration X E F. Intuitively, a redundant constraint is one subsumed by

nearer, intervening C-functions (lower C-manifolds). Let C denote the set of all

applicable, positive-valued C-functions at X = (x, 0). For each fA C C, let si be

the projection into 3R' of the kernel of fi restricted to orientation 0. That is,

Si = y c ' I f(y, ) = 0}.

Note that si is the projection into W3 of the tangent hyperplane at 0 to the level

C-manifold for fi. Intuitively, si is the plane of the face of the Minkowski solid

determined by fi, at orientation 0.

Now, iet hi be the hail-space o1 W" bounded by si containing x. Constructing

flhi
i

yields a solid S in R'. Those half-spaces bounding S correspond to the non-redundant

constraints at X.
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Figure 3.1. /

3.5. Applicability Constraints for type (a) and (b) C-functions

We are now in a position to derive the domains of the C-functions. To define the

applicability constraints, we consider a family of C-functions in isolation (that is,

an tnvironment comprising only the obstacle B and the moving polyhedron A). We

perform an analysis to see what generators can interact at what orientations. While

C-functions are defined on the "negated object" EA(O), applicability constraints

are defined from the "positive object" A(O).

Definition: Consider a constraint c, generated by (ggb) where the pair (g,,,gb) is

either (a) a face of A and a vertex of B, (b) a vertex of A and a face of B, or (c) 2n

edge of A and an edge of B. We say c is applicable at orientation 0 if some pure

translation of A(O) can bring g0(8) in contact with gb, such that

(AE9)) li(B) =.
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See figure 3. 1. Let f(O) be a face on a moviug polyhedron A(O), with a normal

N(O). Let bj be a vertex on obstacle B. (f, bi) generates a type (a) constraint. Let

Rt be the set of adjacent vertices of bi on the edge graph of B, that is,

R = { b,, E vert(B) I•b,,lb }. : 0_

It is instructive to parse the definition for R. (Recall that 6 denotes coboundary). 6b,,

is the set of edges incident at b,,. If two vertices b,, and bj have disjoint coboundaries,

then they are not adjacent on the edge graph of B. If their coboundaries overlap,

then the common element is the edge coiinccting b,, aud bi.

Theorem IIf: A type (a) constraint generated by (f, bj) is applicable at orientation

) if, and only if, for all b, C R,

b,,- N(O) - b - y(O) ; 0. (3.1)

If the type (a) constraint is applicable, then (3.1) holds for all vertices bn of B.

We will show that considering the vertices in R provides a necessary and sufficient

condition for applicability.

Proof: (.=) Observe that applicability is invariant under translation. W'e

tk aoIsfI•iI the wo•lk-spat 50 kplaclat tfie Plan CtI J"(01) CoUit.•,III5 tu V1 IL;I1I. J. ltll for

zE W, x . N(O) is the perpendicular distance of x from the plane of the constraint.

Since face normals are outward-directed, when this distance is positive, then x lies

above the plane of f(6). If (3.1) is true, then when bj is brought to rest on the

plane of f(0), then by. N(O) -= 0. Now, for all b,, C R, b,,- N(O) _! 0. Thus all

adjacent vertices to bi are on or above the halfspace boundary. Since A and B are

convex, their interiors cannot intersect.

(--}) If we can bring bj in contact With f(8) while maintaining the disjoint

interior criterion, then we have b1. N(O) = 0. No b,, C It can dip below tile surface

of f(O), since then the interiors of A and B would intersect. Hence each b,, must

lie sore distance d > 0 above the plane of f(O). *
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Figure 3.2.

Now, let f be a face of B with normal N. (See figare 3.2). Let ai be a vertex

of A, and

R= {a, E vert(A) I fl"6a, €n} • i

be the vertices adjacent to ai on the edge graph of A.

Theorem m.2: A type (b) constraint generated by (ai, f) is applicable at orientatioa"

e if, and only if, for all a, E R,

a,,(E) . N - ai(e). N > 0. (3.2)

Proof: Symmetric case of Theorem (111.1). *

Consider

9k(O) b. N(O) - bi N](O) (3.3)
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Figure 3.3. Tihe applicability region AIc is the intersection of the half-hyperspaces where 9A: >_ 0.

as a mapping gfk : SO(3) --+ W. We call gk a type (a) applicability constraint functioni

(ACF). (There are several iCFs for one type (a) C-function--or indeed for any

C-function, and they are indexed here by k). For the symmetric case from (3.2), we

MkE))= a.(EO) . N - ai(e), . PI (3.4)

a type (b) ACF. The region on SO(3) where gk is positive-valued defines a half-

hyperspace of SO(3) (see figure 3.'3). (3.2) and (3.1) define the applicability region •*'

for a type (a) or (b) constraint as the intersection of these hail hypersp aces. This •

yields the c~onjunction promised earlier:

AA
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A C-function c is applicable if and only il" for a configuration (z, 0), each of c's

ACFs is positive (or zero) at 0, that is, 0 C A,. The number of ACFs for a type

(a) or (b) constraint is equal to the cardinality of lie coboundary of the generating

vertex (which is the same as IJi.

3.6. Applicability Constraints Foc Type (c) C-Auuctions

Determining the applicability regions for type (c) C-functions (generated by

edge-edge interactions) turns out to be a bit more grueling. We can derive a set

of ACFs for type (c) constraints which are analogous to gk in (3.3) and (3.4). The

conjunction of these type (c) ACFa is a necessary but not sufficient criterioft for

applicability. The positive conjunction (the intersection of half-spaces where the

type (c) ACFs are positive) forms two, disconnected regions in SO(3). It will become

apparent shortly how these regions arise, but let us pause, before bringing in some

complicated machinery, to survey their topology. In one region A the type (c)

constraint is applicable, in the other P, it is not. To determine which region 0 is

in, we use a set of related functions termed disambiguating applicability consiraints

(DA s). Fortiatately, the symmetric region A' where the ACFs are positive but

the ,;onstraint is not applicable is disconnected from the valid applicability region

A (where the AC"s are positive and the constraint is applicable) by a region •,

where the ACIs do iiot hold (3ee figure 3.4). We will demonstrate that since A is

disconnected from A', it is possible to plan continuous paths within A with heed

only for the basic type (c) ACIs. B3oth type (c) ACFs and DACs are functions of

the form g: SO(3) -- ; however, they arc considerably more complicated thanm

(3.3) and (3.4), above.

p.
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Figure 34. The space SO(3) showing A, A', and 7. The type (c) ACFs determine wh:-ther 0 is
in the set A or in A U A'. The DACs determine, for 0 E AU A', whether 9 is in A or A'.

3.6.1. The Basic ACFs for Type (c) Constraints

Let c be a type (c) constraint generated by the pair of cdges (ea, eb). As

usual ea(O) denotes e. rotated to orientation 0. We will define type (c) ACFs

which provide a necessary criterion for applicability. In conjunction with the DACs

(below), the type (c) ACFs form a complete characterization of the applicability of

type (c) C-functions. We employ the following construction: imagine trying to make

the midpoints of e. and eb touch while maintaining the disjoint interior criterion

for A and 3. We then allow A to pivot about

v =: mid(eb) =- mid(e0 (O)) (3.5)

while maintaining disjoint interiors. Keeping (3.5), for what orientations (values of

0) are the interiors of A and B disjoint? C
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At

Figure 3.5. A section view through eb (e~b is orthogonal to the page). ,[

Let us denote the vertices of ca and Cb aM follows: (see figures 3.5 and 3.6)

A; let their nor-mals be Nl and N2. Similarly, let the normals for the faces f3 and --
f4 cobounding eb be N3 and N4.

Theorem E1.3: If a type (c) constraint generated by (eeb) is applicable at

r - -

orientation E), then • .•

-d,(O)d2(O) >- 0 (3.6)

-d3CO)d,,(o) > 0 (3.7)

die) =bj. Nt(O) - mideb)• Nl(e) (3.6a) ,4

, 137



\......" . .",- ' .•' " '1

41.4

\ LI

Figure 3.6. A aection view through e.(O) (c.(O) in orthogonal to the page).

d2( -) =b 3 -N 2(0) -. Mid(Cb) -N 2(0) (3.6b)

d~3(0) aj(0) -N3 - rnid(e. 0()) -N3  (3.7 a)

d 4(0-3) N 4(9- -rnid(c() N 4  1.)

(We express (3.6-7) in this forin rather than as d1(O)d2(O) !5 0 in older t-) preserve

the positive sign convention for all the AGFe).

Proof: Refer to figures 3.5 and 3.6. Again, since applicability is invariant under

translation, we transform the workspace so that mid(cb) is at the origin. With

rnid(c,(O)) fixed at mid(eb), di(O) for it* = 1, 2 is the distance of b1 adbjvc t,hq- plane

of fi; for i= 3,4, this is the distance of ui(O) above the plane of fi. We allow 1.41

ec to rotate about v =mid(cb) with 3 degrees of freedom. Observe thai, ai and

ait, may not dip below the surface of B, and that. b3 and bi..1 may not fall below

the surface of A. This is clearly enforced by considering only tlhe planes of the
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faces c•bouiding r. arid q. If the type (c) c(nistraint is applicable at 0, then d,(E)

and d.,(O) can never both be positive, nor both negative, for in thcse cases eb will

intormect the interior of A. We see this as follows: If di(()) < 0 and d(2() < 0, then

bi is inside both halfspaces, and some poiut on the line segment (mid(eb), bj) must

be inside A. 'f d1 (O) > 0 arnd d2(6) > 0, thca bjj. I is inside both half spaces, and
ome point on the line seg;ment (mid(eq), bj . ) must be inside A.

Ilence dj(E))d 2(0) • 0, This immediately yields (3.6). A similar and symmetric

argument yields (3.7). *

U

K

.,.
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3.7. Disambiguating Applicability Constraints (D)ACS) for Type (c)

Constraints

The basic type (c) ACFs take into account edge-edge interactions, but do not

model the interactions of the faces they bound. In order to preserve the disjoint

interior criterion, we introduce Disambiguating Applicability Constraints (DACs) as

follows. l)ACs are constraints on the tangent vectors to faces coboundiuig eh and ea;

assuming that the basic ACFs have determined that 0 G A U A', DACs discriminate

between A and A'. In fact, the DACs are necessary and sufficient conditions for

applicability. We split the type (c) applicability computations between the basic

type (c) ACFs and the DACs for reasons relating to the algebra system, which

is described in chapter 4. Our proofs draws heavily on constructions employing asa p

separating plane.

The Separating Plane Construction

aJi trie omidpoints of e,(9) and e6 together as usual. Consider the plane P

containing v == niid(e,,(O)) -- mid(cb), whose normal is ca(0) X e6. Assume without

loss of generality that e,(O) X eb 3 0. P contains both eb and ea(O). Suppose that

the type (c) ACFs for constraint c are positive-valued (or zero), i.e., (3.6) and (3.7)

hold. Hence each vertex of eb is on or above the plane of one face cobounding

C'(0), and each vertex of e,,(0) is on or above the plane of one face cobounding eb.

Refer to figures 3.6 and 3.5 once more. By reason of the ACF values for c and the

convexity of A and B, some open halfspace P, of R3 which is bounded by P must

contain i(B) entirely, and sonic open halfspace PA bounded by P rniu;- contain

i(A(@)) entirely:

L? C ic(Pnl)

A(O) C %•(PA).

(Rccall that K(S) denotes the closure of a set S: n(S) =i(S) U 9S).

Now, if c is not applicable, then i(A(O)) n i(0) $ O. This means that A C n(1P1)

also, since unless PI = I'l, then P would separate i(A(O)) from i(B). We conclude

0 
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that for all EYEc A', A())C P,, and if)C P11 Bly a symnietric argurnent, forA

all 0 E: A, plane P separates i(A(0)) from 4i(.). To1 su in.xari?.e: If the coniti aiat

c generated by (e(,,,eb) is applicable at orientation (), idicri Z(A,(G)) ri i()
Therefore there exists a separating plane bet.ween i(AO)and 'i(1). (Ori the (Alher

hand, if c is not applicable, there exlstts no such separa inirg planu, for theil thle I
interiors could not intersect. Furthermore, if 6,,(@)) X ej, 74- 0, theuin thefe exists

exactly one separating plane that coittains all four points vert(cL(E( U V)erTt (Cb). We

formalize these results in the following le:--nna:N

In this len-mma, we abbreviate e.(9) by ell arid A((--) by A. A

Lein in.- 111. 4. 1: (Extistence and auniqueness qlf the sqpara ling plane). Join together

the midpoints of e,, and eb. Assumne tlial, e,, X ej, -' 0i. The constraint c generatedh

by (el, ej,) is applicable if, and only if; the plane P1 conitaining e,, and eb separates

th.t interior of A from thc interior of D.

cntancisapial.*"Proof:(- = If P sepairates i(A) from)T i'fl), then. Z(A)fl'~(I) 0. Therefore theI

Proof: (=ý) If c is applicable, then the;, exist~s exactly one separating plane bet~ween

()anid (),and this plane is 1'. To wee this., first observe that If i(A) A i(1) o,
then by convexity there must. exist some szpazating plazie. Assume that this plane

(toes not have normal e,, X Cb. Ill this case, the plane cannot contain both e,, and

ej,. Since thle planc contains time mnidpoint-; of both edges, it m~ust intersect either

e~,ote~ n no-pralelcut Bt ji hisca e f pla-i-~ itscts th interior o

either A or B. Thus it cannot h~c a separating planec. Shice there Imisf exist sonie

separating plane, iL miust havoŽ normal e,, X eb. I

Trhe strategy for defining l)ACs is as follows. For nacli face cobounding el,, we

choose a point in the intericr or that face. TIhe ba.-iL type (c) ACI:'s ensure that,

eb is outside time interior of A(()), arid that e,,(C) is outside the interior of B; tile

1)ACs .ýnsurc that the faces cobouiiding eh lHe on the ol)1osl~e side of P from thle

the flac(.s cobouriding c,,((-). If thle type (c) constraint is applicable, theni ?,(A(O))

must lie in a hialf-space bounded by P comnplenuldnlLary to t~ibŽ hahI:-splace bounded

by P containing 4(I1). The l)ACs ensure that if theq faces cobounding ellO lie in
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Figure 3.7. T'he Tangent Vcctors T3 and 7'4 to the faces cobounding eb.

"c(PA), then the faces cobounding eb must lie in rc(PU), with PA = Po. Since A and

B are convex, this suffices to show that A and B lie in complementary half-spaces

bounded by P.

"The vertices of ea(O) and eb lie on P. Let pl, p2 be points in the interior of the

faces cobounding z., and. p3, P4 be points in the interior of the faces cobounding

c.b. The DACs ensure that p, and P2 lie on one side of P, and that, P3 and p4 lie on

the other.

Tile points inside t.he faces cobounding eb and e. are chosen as follows. For

each edge e on 11 and A, wc construct a pair of tangent vectors, (TI, T2), where

T1 and T2 are tangent and interior to the faces cobounding e. T1 and 7T are also

peipendicular to e. For an edge e, on A, (T,(E),T.,(e)) will clearly rotate with ea

and A, maintaining these criteria. The tangent pair for eb is shown in figure 3.7.

Formally, we proceed as follows:
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Figure 3.8. The tangernL pairs and norinaha for e.(0).

Definition: A tangent vector to W3 (O'Neill (1966)) is a pair (v-p) E R3 X R3 ,

interpreted as the vector v applied to point p. We will sometimes write vp for (v,p),

or, when there is no ambiguity about the point of application, we simply write v.

Definition: Consider an edge e on a polyhedron P. Let fl, f2 be the faces that

cobound e, and let N1 , N 2 be their normals. A tangent pair for e is a pair of tangent

vectors to W, (T1,• 2 ), both applied to mid(e). Tj is perpendicular to e and to Ni,

and it is directed into the interior of fi when applied to mid(e) (i = 1, 2). In other

words,

Ti -- k(Ni X e) (i == 1,2)

where k E { +1, -1 } is chosen to orient Ti into the interior of fi. Ni X e indicates

the cross product of Ni and the directed edge vector for e.

14



Refer to figures 3.7 and 3.8. We will now construct DACs. Let (711, T 4) be the

tangent pair for eb, and let Nj, N 4 be the normals to the faces cobounding eb. Let

(T1(8),T 2(0)) be the tangent pair for e,(O), and let N1(O), N2(0) be the normals

to the faces cobounding e,,(O). Thus 2-- Ni = 0 (for i = 1, 2, 3, 4). Keeping with

this numbering convention, let f, be the face with normal Ni. As usual, we imagine

joining together the midpoints of eb and ea(O).

Let N1 .(O) be the normal to the plane P, that is, N1 ,(O) = ea(O) X eb. Assume

without loss of generality that Np(9) 4 0. The plane containing mid(e,,(6)) =

rnid(eb) with normal Np,(O) also contains e,,(O) and eb. We construct DACs which

ensure that i(A(0)) is on one side of P, and that i(B) is on the other side. To

ensure that the points mid(eb) -+- T3 and mid(eb) + T24 lie on the same side of P, we

have the constraint

sign(T.j - Nj,(O)) sign(T 4 -Np(O))

(T3 .N ,,(EO))(T4 . NI,(O)) > 0.

Assume without loss of generality that the signs are Iron-zero. The case where one

sign is zero is easily handled by examining the other sign. To ensure that the points

mid(e,(O)) + T1(O) and mid(e,(9)) + 2'2(() lie on the same side of P, we have the

symmetric constraint

signC(T(O) .lN,,e)) = sigr(T2(0). N,.(O))

Now, we must ensure that the two half-spaces are complementary. This is enforced

by insisting that the signs are opposite. All of the following must be true:

k~l =sign(Tj • Np,(O))

sign(T4 N,(0)) (3.8a)

kA sign(7'1(O) . Nj,(O))

=sig n (T 2 (( o) .N p ( o)) (3 .8 b ),
kA $ kj1  (3.8c)

Equations (3.8a-c) embody the DACs we require.
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Theorem 111.4: Let c be a type (c) C-function generated by (e,,eb). Assume the

tangent pairs for eb and e,, and normals to the faces cobounding eb and c,, are as

above. Then c is applicable if, and only if, the all the DACs (3.8a-c) hold.

Proof: (=*) Assume the type (c) constraint is applicable, but that at least one of

(3.8a-c) is false. We will demonstrate a contradiction. Join the midpoints of ca(O)

and eb, as usual. If any of the DACs is false, then P does not separate i(A(O)) from

i(B): a contradiction. *

Proof: (--=) We show that if the DACs hold, then c is applicable: if these conditions

are true, then P is a separating plane. Therefore the interiors cannot intersect, and

c is applicable. I

L
N&L
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3.8. On the Structurc of the Type (c) Applicability Regions on SO(3)

In this section, we prove a theorem on the structure of the regions A, A', and

Sfor type (c) constraints, (see figure 3.4) which yields an immediate completeness

result for our formulation of ACMs and DACs. As promised, we will show that A

and A' are disconnected on SO(3), and that the region - separates them. Our

proof draws heavily or. constructions employing a separating plane (lemma 111.4.1).

Theorem llJ.5: 7 disconnects A from A' on SO(3).

Proof: We first observe that by definition,

A U A') = So(3)

(see (3.6), (3.7) for confirmation). Recall the separating plane construction: we saw

that for all 6' E A', i(A(e')) C PJ' and i(B) C Pjn. Let 7P11 denote the interior

f . 1. . A . -if . k 21). .1 ,j . . - .... *J" . ,1!

0 E A, plane P separates i(A(O)) from i(B). If A U A' is path-connected, then there

exists a continuous function, p V -- + SO(3), such that p(O) = E), p(l) = 0', and

p(1 1) C A U A'. Furthermore, if A U A' is path-connected, then for all t E 11, either

i(A(p(t))) C P11, or i(A(p(t))) C P 11 (assume without loss of generality that for all

t, eb X e,,(p(t)) 3- 0). Note that for all t,

P f t 0. - 0.

Hence in traversing the path p in rotation space, A is required to "flip" over P

from P11 to P 11 , without its interior ever intersecting P. This is clearly impossible

if continuity is to be preserved. I

3.9. Orienting Type (c) Conistraints

Consider alfixing Tnid(e 0(0)) to v =-mid(eh) as usual. Refer once more to 3.5

and 3.6. The cross product

N,,(e) 4 (e,() X eb
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when applied to v will for some 9 point out of PJl at,d inLo PA; for other 0,

Np,(O) will point into P11 and out of PA. (Assume for now that N1,(O) / 0.) llence

for some orientations Nr,(O) is the correct (unnornialized) real-space normal for

constraint (Ce,eb); for other orientations we must employ -N,,(O). When applied

to v, the real-space normal kNp,(e) (for k E { +1, -1 }) must always point out of

I'Pi and into PA. The following rule for choosing k is stated without proof:

k = sign\/,(()) • 1(()) (3.12)

where 1() =- T1(O) + TO(0).

H1owever, it is easy to see that we need not compute this dot product each

time we use the C-function. k (and the orientation of Np(O)) will be invariant in

regions of A where the signs of the ACFs are invariant. For example, if k is positive

for some 0 E A and

d-j(O) > 0 and d4(0) < 0, (3.13)

then clearly wherever (3.13) holds, then k must be positive. Also, wherever

d3 (E) < 0 and d.1(o) > 0,

k must be negative. This argument should be quite obvious if the reader imagitnes

how the cross product of the edges changes as e, pivots about mid(cb). This leads to

the following simple algorithm for orienting a type (c) C-function c. Essentially, we

can just compute (3.12) once, and record the signs of the ACFs at that orientation.

(i) For some 6, compute the values of di(6) (i = 1, 2, 3, 4) for the type (c) ACFs.
If c is not applicable, then stop.

(ii) If k has not been computed yet, calculate k as in (3.12). (Assume k / 0). Record
the signs of d:j(O) and d&1(0) for c. We call this pair of signs the sign map for c.

(iii) If a k and sign map have been computed for c, then compare the recoided sign
rnap to the current sign ,,ap for d.,(-) )ad d4(0). If the sign maps are equal,
use k to orient c; otherwise use -k.
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3.10. Singularities and Speccal Cahes

Our analysis of type (c) ACFs and DACs assumes that e,(E) and eb are never

aligned, i.e., that their cross-product is never zero. In addition, our algorithmU.

for orienting type (c) C-functions wssumes that no function di is zero. The cross

product will be zero when e0(O) is parallel to eb, and an ACF will be zero when

either e.(O) is aligned with a face cobounding eb, or when eb is aligned with a face

cobounding ea(O). In practice, these special cases will arise frequently. Fortunately,

they can be ignored. Consider the following: The vertices of e, generate type (b)

constraints witb the faces cobounding eb; and the vertices of eb generate type (a)

const.raints with the faces cobounding ea. In the cases where e,,(E) is aligned with

eb or a face cobounding eb (or in the symmetric case), some of these constraints

will also be applicable. In these aligned cases we say that the type (c) constraint

is subsumed by the neighboring type (a) and (b) constraints, because the disjoint

interior criterion will be enforced by the type (a) and (b) conntraints alone. This can popS.. ... .. ...... .. ..�.. ....... • " ...... .. for ('. I x• r np-k~d 't S e a1a3,•w!•'• .

at 0, and that 0 E A, Then both mid(e(O)) and ai(O) can be brought to rest

an the plane of f3, while preserving the disjoint interior criterion. Since aiýi( (0)

is also lies on e.(O), it too may be brought to rest on the plane of f3. Clearly,

the type (b) constraints generated by (ai, f3) and (ani ,ft) must also be applicable

at orientation 0. At this aligned orientation, the type (c) constraint ensures the

following: while mid(e(0)) is on the plane of f3, ai(e)) must also lie on the plane

of 3.. This is preciseiy the condition enforced by the equivaeuLt pair of Lype "b'

constraints. Symmetric arguments hold for the other ACFs.

3.11. Level ACF-

For ACFs, there is an analogous concept to a level C-Manifold. Let g : SO(3) --

T be an ACFI for a C -function c. An A CF Boundary is the space of rotations where

applicable and g is zero: ,':,J

1era = a F o0(3) I g(() 01.

A Level ACF i:• the space of rotations where c is applicable and r is some cou.,-tanti



value 1:

{ E SO(3) I g(o) = t

Recall the getometric interpretation for ACFs. Consider a type (b) constraint (see

figure 3.5). A path p : P--+ SO(3) along a levcl ACF for the constraint (ai, fji)

would, if the midpoints of the edges were affixed, preserve ai(6) at a constant

height above the plane of f3.

3.12. A Note on the Computation and Algebra of Applicability Constraints

The implemented planning system contains an algebra system (described

in chapter 4), which performs the computations relevant to the applicability

constraints. We would like to make the computation as simple as possible, for

otherwise an implementation might be infeasible.

:... L that , tc f L. ur .t pcs Of co1ptti wit; .. ... t,

constraints:

(i) Type (a) ACFs (3.3) which determine the applicability of type (a) C-functions.

(ii) Type (b) ACEs (3.4) which determine the applicability of type (b) 0-functions.

(iii) [Basic] Type (c.) ACFs (3.6) and (3.7), which provide a necessary but not
sufficient condition for the appiicability of type (c) C-functions.

(iv) l)ACs (3.8a-c) which provide necessary and sufficient conditions for type (c)
applicability,

1Iowevet, it is; not hard to show that the real-valued functions for (iii) and

(iv) are composed oý ,ixpl., type (a) and (b) AOFs. We will demonstrate this as

foUlows, l.e; ,tA3 be the spa.cc of normals to plan,2s in V1. Note that AP' is of course

isomorphic ,) Ri'. We .ow define the functions FA and F11 to model the computation

of type (a) and (b) ACFs. These functions will be composed to compute the more

coir plex type (c) ACl"s and DACs. Let /Tj and FJ• be real-valued functions

R 3 x_

where
1',i(b,,, bj, N, 0) = •,,.N - b N(O) +-"*.,-.,

7 -, ,..•

_ --
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and

,11(a.,,aj, N, 8) = a,,() . N - a1(O) N.

Clearly, FA and Frj can be used to cop-"te ACFs for all type (a) and (b)

constraints. They can also be used to compute type (c) ACFs as follows:

FA(b, mid(eb), Ni, E), if i = 1,2;

tF1 (ai, Jid(ea), Ni, if i =3,4.

N1 .(O) is already computed as the real-space normal for a type (c) C-function.

With Np,(8) in hand, DACs can be computed using "j3 and FA. This is because

DACs are essentially constraints on tangent vectors to the faces of the polyhedra

in question, and the tangent space of 3 is isomorphic to its normal space. We

will show how to compute DACs using type (a) and (b) ACFs. Our trick for

rotating a tangent vector (v, p) simply involves rotating the line segment (p, v + p)

to (p(8), [v + p](6)). For example,

T1(O)9. Np(O) Fr1 (mid(c,(9o)) + T1 (G0), mid(e(,(Eo)), N,9(O), e)

Here 0 o denotes sonic fixed orientation. Typically O0 is the identity clement for

the rotation group, i.e., it. denotes no rotation at all, and will be the orientation

in which the polyhedra aic given, and in which the tangent pairs arc initially

coniputed. In particular, [Ti(O0)](O)"- Ti(O).

Our reduction of all applicability computation to a few simple functions is

partially motivated by awsthetics, and partially by the design of an algebra system

for our planner. The reduction will admit a simpler and more elegant design.

M.2.1. A Conjecture

Let us niake one final comment on type (c) AGCF. For each type (c) C-function,

there are two type (c) ACFs. One type (c) ACF (3.6) is the product of two

type (a) AC1s; and the other (3.7) is the product of two type (b) ACFs. These

pioducts are constrained to be negative. In practice, we would probably wish only

to compute the value of each subres,,lt (di) for each type (a) and (b) ACe, and then

compute i logical conjmiction to determine when one is negative and the other

1150.



positive, instead of coraputing their product. 2 We coajecture that the composition

of type (c) C-functions and ACFs reflects the underlying algebraic structure of these

constraints: observe that each type (c) face f,,, of the Minkowski solid D E A(O)

is the composition (by direct sum) of an edge on A and an edge on B:3

fa,b = ea(e) (Deb. (3.14)

Similarly, the (real-space) normal Na,b to such a face is the composition (by vector

cross-product) of an edge on A and and edge on B:

Nab =--= ea(O) X eb. (3.15)

In this chapter we have derived a new symmetry, a symmetry for the ACFs of type

(c) constraints. In particular, it is now clear that type (c) ACFs are the composition

(by scalar multiplication) of a pair of type (a) or (b) ACFs.

2'C'iis i•l)pproach is takt e for the i rilhmented p1lanner.
31, I ,quati,,, (3.14) and (3.15) are from, I,,zao-',-rz (1 983).
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* 4

4

Mathematical Tools for MotAion Plaanitug.
in a Six Dimensional Con.gtra.fion Space

4.1. Introduction

Our earlier presentation of representational is.ues and applicability cc•iu.;traints

in R' X SO(3) addressed basic theoretical issue-s for the rtution plannirig problem.

In tbis chapter we discuss specific issues wLich were criilcal i'ol tl(. ir:lplealientation

or the planning system described in chapte: 2. The fundament-ai issue is the

intersection problem in high-dimensionaý' conligirraion ,13pces;

(i) How do we intersect high-dimensiolal level C-Mainiiold. to constr., A an
intersection manifold?

(ii) Ilow do we intersect a trajectory in configu. ation space witi' C-S p ace consti aints?

Examples and applications of these results maj be foundt in chapters 1 and 2.

We will proceed as follows. First, as a "sirpie" exIanple, we will ;.'olve these

problems for the configuration space TL X S'. For t0i6 space the algebi'a is not

unreasonable and illustrate, some of the complexities of planning for the 6DOF

case. However, in W" X S0(3), the equations for some constraints (notably, type (c)

constraints) can fill several pages. For this reason, I first computed the general form

of the intersections for an arbitrary constraint, and then solved all intersections

using Macsyma (ICS (1983)). The results were then optimized and compiled into

LJ.6p. For all practical purpo:;cs these results are in machine readable form orly. For
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example, using Euter Angles paramneterized by 0 = (¢, 0, €) for three-dimensional

.rotations, 7. a type (b) coostraint in !Aacsyma becomes:

((-.XC (Al) *XC (.GJ) .COS PLt) -XC (Al) *YC (NGJ) *SIN (PI)) *COS (THETA)
4XC (Al) * Z((NCj), * 1N (T,i*TA) -YV (AI) *YT (NCJ) *COS (PHI)
-YC (Al) *Xr (NGJ) *SIII (PHI.))
*COS(PSI)

+ ( ( (Al) -XC (NCJ) *iC. (PH7) +YC (Al) *Yc (NG) *SIN (PHI)) *C08 (THETA)

. -'Y (Al) -ZC (NGJ) -,S'i. (TRETA) -XC (AI) *YC(NGJ) *COS (PHI)

+XC (AI) *xC(MWJ: * iRl (PHI))
* SIN (Pi) .(AlT ý ZC (NG.T) *COS (THETA)

*+ k-ZC (AI) *V6 NirJ) *COS (PHI) -ZC (Al) *YC (NGJ) *SIN (PHI)) *SIN (THETA)
S -YC (Th J) COGSPHI)+XC(NGJ) *SIN(PHI)+ZC(NGJ)*Z+YC(NGJ)*Y+XC(NGJ)*X

-IC (dJ) ,ZC (liGJ) -YC(BJ)*YC(NJ)-XC(J) *XC (NGJ).

'This is the simplest of the constraints; a type (c) constraint is over 10 times as long.

Fok DO X SO(3) our approach has been to (1) derive these constraints (and the

ACFs) from some arbitrary representation for rotations, (2) reduce each constraint

to a series of simpler, canonical forms which are linear, bilinear, or quadratic in the

terms of interest, and (3) develop simple mathematical procedures for operating on

the canonical forms. M% --

For example, to construct an intersection manifold for n constraints, we

essentially need to solve a set of n simultaneous equations, each of the form

f(X) == 0. (X E 3 X SO(3))

We proceed as follows. Let D -- {,y, z, V, 0, 0 1 be the set of all the degrees

of freedom. First we select P, a subset of 6 - vn elements of D. P will paraincterize

the intersection manifold. The variables in P will be the free variables which the

planner can choose; the variables D - P will vary dependently with P so as to stay

on the i. tersection manifold. Mechanically, this entails (1) solving the n constraints

simultaneously eliminating all but one variable in D) P, and (2) expressing all

dependent degrees Gf freedom D - P in terms of the free variables P.

The canonical forms are expressions for C-functions which make explicit the

coefficients of the dcpendent variables (D - P) themselves, and or the sines arnd .yJ

cosines of these variables. 13 complicated equations describe the canonical forms

'Huler aglehs are imphlm,'iitdC ;L4 rotatioIm imarimcs iii the phuimmr. Sv'c SymJ(,I (1971).
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of a C-function, and 9 equations are needed for a type (a) or (b) ACGFA. Complete

Macsyma listings of these procedures are provided in an appendix. Becfore wading

into these waters, however, lot us turn our attention to the configu ration space

91X S1.

We will adhere to the definitions and conventions established in chapter 3.

4.2. The Intersectioni Problem in, q2 X S1

The find-space and find-path problems in 9?2 X S1 are of considerable intrinsic

interest. We have suggested that good algorithms for the two dimensional Movers'

problem could be developed by planning along the intersections of constraints, Some

of the necessary thcoreficall tools for this approach are presented in this section.

These results illustrate the principles neces3sary for planning along intersection

manifolds in , X SO(31. The derivations are simpler because (1) the constraints

are simpler and (2) the applicability regions are merely sectors on the unit circle. A

complete, general path planner has been implemented for this problem (see Brooks

and Lozaiio-Per6z (1983)). This section serves both as a pedlagogic example and as W %M

a presentation of a new approach to the planning problemi in R' X S 1.

To plan paths along the initersections of constraints, we must be able to construct

the initersection manifold of somne set o1' constraints. To preserve tradition (See

Brooks and Lozaiio-P'er6z (1983), for example), we will call aniy level-O C-tmanifold a

C-surface. A C-surface is the space of configurations whcre L. C-tunctiun is applicablle

an'd zero-valued. O-sur faces are interesting because they bound C-Space obstarhles.

We will derive the fortrn of the intersection of ally two C-surfaces in TJZ2 X Sl. Each

C-surfacc is a 2-dimiensional mranifold in R- X S1, and their intersectioip maniroll is

a curve p iii T'2 X S'. We derive a curve p which is parametric in 0.:' 'Since there are

2 ypes of' C-surfacesi (type (a) awl (bi)), thc?.e are 3 types of ln tcerscctioii inanifolds.

The.. Ui Inticrrt'ctiori of '1wo C-Surf~aces-ý in ~X5

W~e dlescribe a technique for findingo the intersection of' tiwc C-surltces Ifor the

tlV( diincitisonal inover'., problcm with ro;Udr;ioas. Throughicit this discussion of
, 1c I :.)w wvhi I'. wv-( '~~~ (.'',o jr~, ;I AH i' arid IA(!, A M OII ~'JiO.it~io!' or ty[W (a)

wic f( )) A\L .

3I~ei'rh tht.(;-. O ? j 4 vt ti ypirai pf.IfIi. hil the C- pai'c W Xj S .



R' X S 1, we will employ the abbreviations C = cos0 and S sin0. The surfaces

are embedded in a 4-dimensional manifold and expressed as functions on GC, y, C, S)

with the added constraint that C 2 + S 2 - 1. A system of equations for two surfices

can then be solved for x and y in terms of C and S.

Two type (a) constraint surfaces are functions of the form f(., y, 0) 0, for

example:

sin(0 + X1)y + cou(0 + >i)x - IlbjI cos(o0 + Xi - -y) -- Il1iI cos(Xi - qi) (a])

sin(O + X)y + cos(0 + X)z - Ibfll cos(0 + X! - -4) - IHa!1 cos(X: - 27) (a2)

Similarly, two type (b) surfaces are: -

sin(ikj)y + cos(Oj)x - Ihlal cos(0-- Oj + ni) - i~bill cos(%j - (b)0

sin(Oý)y + cos(Oý)x - I1a11 cos(O - ±j + q) -- IIb;l cos(¢ - ly4) (b2)

Refer to figure (4.1). Here the ai's are vertices of the "negated" moving polygon

(C)A in Lozano-P6rez [i981, H83J), in its local coordinate syteum q -is t . .. angle

the line from the origin of that coordinate system to the point ai makes with the

coordinate system 's x axis, and X- is the angle made by the normal to the segment

fiom ai to aii.t. Similarly the bi's are the vertices of a convex obstacle polygon, -Y,

the orientation of the line from the origin to b3i, and Oj the orientation of tOe normal

to the segment from bj to bjir. The parameter 0, a parameter of the configuration

space, mcasuies the angle between the x-axcs of the object and obstacle coordinate

systems.

Type A constraints can be thought of as being gcnerated by a face (edge) of

the moving object A coining into cont.act with a vertex of an obstacle B, and a

type B constraint as a vertex of A coming into contact with a face (edge) of B1.

S15
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*1 A

A

I I

--. _' - - -/ "*'-'
type A

type a

Figure 3. The two types of surfaces can be defined by bring the referenrtc point of the
negative of moving object A into contact with a vertex and am edge of fixed obstacle B.
Both are defined over a range of orientations 0.

Figure 4.1. An illu.-,ration or the tcr.•s in equations (al) and (bl). Reprinted with permi.nsionr
from Brooks and I,ozano-PI'rt"z (1983).
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Each constraint is valid only over a fixed range of 0. F or type Astiurfaccs the range

is given by 0 E [oj-I -Xi,oij-Xi] and for type BIsurfaccs by 0 G [Oj- , qOj- 11. 4

By applying trigonometric reductions we can express these constrahits as

follows (only (al) and (hi) are shown):

cos(Xi)Sy + C sin (Xi)y - sin(Xi)Sx + C co;i(Xj)x

+ sin(Xi - -yj)IlbjIIS - 11ai11 cos(Xi - v~i)

- C cos(Xq - yi)llbill (at)

sinik)y + cos-ik)x - I1a:iI sifl(O1 - iS-CiIJa1iI cos(4O, - tj) - I1biI cos(4.j - -yj) (bi)

Where

C =- CosO,) S =sin 0.

Now, we can consider a pair of these equations as a systcm in four variables, r

(X, Y, CIS), and proceed to solve (al) and (U2), (hi) and (b2dl), and (at) and (bi) for

x and y. For example, the intersection of two type (a) surfaces, (at) and (a2) is a

curve

p :r.1nfr.2 X S,<

where r.l flr.2 C S' denotes the intersected applicability constraints for

(at) and (a2). Although the solutions are in the variables C and S, we ca.n. use

C =cos 0 = cos r and S =-sin 0 = sin r to generate the curve of intersection

in DJZ2 X< S 1. Becausc of their excessive length, these equations may be found in

appendix I. 
9

4.2.2. Intersectinig Trajectories3 wiulh C-surfaces

A Genecal 1)isetvision for UP~ X S' and pL X SO(3)

In order to ruotivate a discussion of' the intersection problem for trajectories m
and C-surfaces, we now introduce the problemn in a context which will be expanded

~ So urc e: Th l ast;i . th~ree pa rag r aphsi are exce r p ed from BiIIrooksM arid (I I .0?. rio c z [I !18:1].
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upon in chapter 5. The goal of this discussion is to illustrate how the intersection

results are used in the planner described in chapter 2.

I5--
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In principle it is possible to intersect arbitrary trajectories with C-surfaces-

such trajectories could translate and rotate simultancously. Once an intersection

is found, we must then determine whether (I) the C-surface is applicable, and (2)

whether it lies on the boundary of a C-Space obstacle. The question of applicability

may be resolved a priori by maintaining and updating an accurate set of applicable

constraints as the planner moves through rotation space. This set, is called the

applicability set. As the planner moves from E to E', the updating algorithm

must detect which constraints have ezpired (ceased to be applicable) and which

new constraints have been activated (become applicable). The expired constraints

are deleted from the applicability set, and the new constraints are added. In this

manner the trajectory will be intersected only with the applicable constraints.

Another approach involves intersecting the trajectory with all C-surfaces, and then

finding the first applicable intersection on the boundary of a C-Space obstacle.

The first strategy is more general in that it decomposes the image of the trajectory

into equivalence classes where the applicability set is invariant. Hence it can in

principle be used to map out thesee equivalence classes on S0(S). lowever, for

most environments the latter strategy runs faster, although both techniques can

be shown to have the same asymptotic complexity. Both algorithms have been

implemented"r and tested, and are presented later in chapter 5.

There are also two ways to determine if an intersection lies on the boindary

of a C-Space obstacle. Let X be the intersection point of a trajectory with an

applicable C-surface f. Then X lies on the boundary of a C-Space obstacle bounded

by f if either of the following holds:

(i) All applicable C-functions in f's family are negative or zero-valued at X.;

(ii) If the projection of X into real-space lies within the displaced face of the 4
Minkowski solid corresponding to the generators for f.

Correctness Argument: Let us briefly discuss why (i) and (ii) arc equivalent. The

correctness of (i) is obvious, since the C-Space obstacle is constructed as the finite

intersection of half hyperspaces, each of which is defined by a real-valued function

on C-Space. Let S dc,,ote the face of the Minkowski solid, and x the projection of

90or X S')O(3) but not for gNL2 X S1.
"6 ''lie Jairnily 01'a C- fu iici.ion Is d(dineid in~ 3. 2.



the intersection point into real-space (i.e., X =-- (x, 0)). We will demonstrate that

(i) 4: (ii).

(=ý) Suppose (i), but not (ii). We demonstrate a contradiction. z must lie on

the plane of S, even though x iS, since that is how the C-functions are defined

(X could not be an intersection point, otherwise). Recall that the normals of the

faces (and planes) bounding the Minkowski solid are defined to be outward-directed

from the interior. Since the Minkowski solid is convex, the plane of S bounds a

half-space entirely containing the solid. If x is not within S, then it must be outside

the plane of some other face, S', which shares an edge with S. But in this case,

the C-function corresponding to S' will be positive-valued: a contradiction.

(m) ~The Minkowski solid is convex. If X E S, then it is behind (or on) the

plane of every other faces of the solid. The C-functions are defined in terms of the

distance of x from these planes, which must be negative (or zero). a

One further note: suppose that all intersections with C-surfaces-including

non-applicable C-surfaces----.have been sorted along the image of the trajectory in

C-Space. Then if X is the first intersection for which (ii) holds, then f is applicable

and X lies on the boundary of the C-Space obstacle. Again, both approaches have

been implemented, and the results are discussed later.

Intersecting TPrajectories with C-surfaces in R2 X S1

We will now present methods for intersecting pure translational and pure

rotational trajectories with C-surfaces in W2 X S . Note that as long as every path

of interest lies entirely within open sets of 9,ý2 X S 1 , then for every such path there

exists a homotopically equivalent path composed of "staggered" pure translations

and pure rotations. We assume such paths can be expressed as (piecewise) linear

functions of some parameter. Intersecting such a path with a C-surface entails

finding the zeroes of the associated C-function (with respect to the parameter).

Pure Translational Paths. Note that (at) and (bl) are linear in x and y. At a fixed

orientation their projection into real space is a line. A pure trarislAtional p)ath is

also a line. Clearly then, int.er,;ection oF a pure translational path with a C-surface

is trivial.
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Pure Rotational Paths. A pure rotational path is a linear function from I, to S'.

Intersecting such a path with a C-surface involves Finding tle zeros (with respect

to 0) of the C-function at a constant translation. Observe that C-surfaces (al) and

(bl) are linear in C and S, that is, they can be expressed as

E1C + E,2S + E 3 =-- 0 (4.1)

where the terms Ei (for i = 1, 2, 3) vary only with x and y. The zeros of (4.1) are

not hard to find. First we note that (4.1) can be expressed as a pure quadratic in

C (or S), and that solving a quadratic for its zeros is easy. (We must, of course,

check for tile first applicable zero which is on the boundary of a C-Space obstacle).

This method is not the best because of susceptibility to numerical problems and I'
singularities. Hlappily, such equations arise frequently in robot kinematics; Paul
(1981) describes a stable, singularity-free calculation for the zeros of exactly this

form of trigonometric equation.

Practical Note

The reader will notice that motion sliding along an intersection manifold

in 92 X S' will not in general be a pure translation or rotation. We have not
derived the results for intersecting arbitrary trajectories with C-burraces in W2 X St ••••

although in principle it is possible to do so. Note that any such sliding motion

can be approximated as closely as desired by a sequence of pure translations and

rotations, and furthermore, any such "approximating" planner will be complete (in

the sense discussed above) if the "sliding" planner is complete.

Furthermore, our purpose here is a theoretical analysis in low dimensions 1

which still illuminates some of the staggering diffi culties in qt3 X SO(3). As it turns

out, with the additional degrees of freedom in O X SQ(3), this turns out to be

considerably less of a restriction.

W X S1
4.3. Related U'roblenis in 2 .RAI

There are a number of interesting related problems in •R2 X S1 . The first

addresses techniques for "sliding" along one geometric constraint (C-surface).

Sliding is a useful way to circumnavigate obstacles; it can also be used to slide to an11

l iil
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intersection manifold. The second result is of use in the find-space and coordinated

motion problems, and invo!ves characterizing the mininmum clearance to a C-surface

in SR" X S'. Again, these risuwlts ate presented not only for their intrinsic interest,

but also as an exposition of some of the algebraic techniques required and as anr

illustration of the complications arising in high-dimensional co.Afguyrxan spaces.

4.3.1. 'rechniques for Moving Aloog C-Surfaces in R2 X S'

]l this section we present techniques for moving along a C-Surfacc. 'Vc could

imagine using these methods to move to the nearest "edge" (C-Surface intersection),

for example. A level C-Surface is defined via a fwiacion f(x, 1, 0) == k for k _onst.aiit.

f is exactly of forin (ai) or (bl) (above), antd the level kairface in R X S' is all

points

L {X C R2 x ri fx) t }

where r1 C S' is the 0 applicability range for f.

Define a hyperplaiee in qZ2 X S1 as the set

P= {X C R2 x S' IX Hi -h41 },

where II = (i 1, h 2, h3).

We intersect the level surface L with the hyperplarie ' to obcain an intersection

curve p -: 1 X S1. The equation for this curve for both type (a) and (b)

C-sarfaces may be found in appendmx I.

4.3.2. Charactcriziiig Clearance to a C-Surfcz;-

It would be very .u.sdul to charactcriz, the ,inin,,, clearanice Co a C-Surfacc.

The resukt could be applied in the coordinated motion problem to determnine where j
two iimobi'.e ojects could pos.,ialy iiteract. In the find-spJae pioblemf,, wC could use
civaalruce iinforln:tion to iiiaxituizc the clearance to a cowitraiit while pl•.ciug Owt,

olicct, in order to Ir ave room for another. We wvoodh like to au.swcr the quwstion:
uvv

S t "or u point b.,j C T •", al "•,,&Ot orientation is b.... ,lo.sc.,ýt t.i a C- .tarfacc, and -er

U'lhat, is ? m m unim directcd (.lr4ruLcc vwtclor (it t-hat ?ive.,bitlion? ..b.r

Usrig Lagra.qciiutjl,1;,tls, we c3n mniitimiinze a function f(., ,0) subject to a 6

ccnstr.i t..q(x, 0;, 0) - b U by con: It,.ct il.g the a, xiliary 'ftw :t ,io

1 67
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fI(T, tj, t,) f(X, 1j, 0) I g(X, Y, 0)

and simultaneously solving the partial derivatives of H. In our case, g will deline

a C-surface, and f will be a dista.nce function. Now, the rotational dimensions

cannot be treated uniformly in establishing a inctric, so we will define distance in

Euclidean space. Minimizing the square of the translational distance suflices for

our purposes. Hence,

f(Xy ,0) ( b.)' + (Y-b) 2 .

Differentiating ii gives us a system of* four equations. Solving these equations for x,

y, 0, and I is not tlivial. We provide the solutions and their derivation in appendix

I. (Solutions are given for both type (a) and type (b) C-surfaces).

4.4. The Interscction 1Proilcrn in I"' X SO(3)

In this section we extend thz previous examples of intersection problems to .-.*.-

thf 6-dimensional C-s PCel S._(3) Al.. this point we mnust comvnit ourselves n%.-

to a particular representation for rotations. The implemented planner uses a

rotation matrix specified by Eulcr Angle-i. Implementing a different rep:esettation

for rotations (siuch as spherical angles, q(iattrnions, or joint angles for a Cartesian

Manipulator) would merely require replacing the Yacsyna rotation abstraction

ROTATE-VECTOR with the appropriate new function (and recompiling the algebra

system). The Euler Angles are

E)l

The intersection problecits in ,3 X .50(3) are as follows. With each problem

we give the moLivation for attacking it.

(i) lutersecti,,g (level) C-.Nurlfacs. (Necessary to construct, the intersection manifold).

(ii) I,,tersect.ing 1,eI vel ACF,,. (Ite resting .iv,,or,'ti,:al ,te ,stion: relats to plantiiig onl
different. k i&d of interlsec .ion ,ianifoids, aid exploiting coherence in C-Space

const rai itts). . ,..

(iii) lInter.:ccting C-Surfaces with eý,cel ACFs. (Same as (ii)).

(iv) l,,t rsect.ing Trajectories with C-surfaces. (Indicates that we may have hit a

C-Sparc obstat,-e).
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(v) Intersecting Trajectories with ACFs. (Indicates that a constraint has expired
(ceased to be applicable)).

Note that we never have to intersect a trajectory with a DAC, since any path

straying out of a type (c) constraint's applicability region must first violate an ACF

boundary (see Theorem 111.5). Since all ACFs can be composed out of type (a) and

(b) ACFs, we need only deal with three distinct kinds of functions on W 3 X SO(3)

and two on SO(3). In the context of this section the term ACF is used to refer

on!y to the basic type (a) and (b) ACFs out of which all ACFs and DACs may be

composed.

Our approach is as follows: We express all C-functions and ACFs in certain

canonical forms. The Macsyma procedures to derive these forms are provided in an

appendix. We then develop certain operations which are defined on any function

expressed in these forms. Throughout this discussion of R 3 X SO(3), we use the

notation Ca -- cos a and S, = sin a where a E { 4, 0, 6 ). Most of the claims in

this section should be self-evident when the rotation matrix R(E)) for Euler Angles

is considered.

Claim 4•.1: All C-functions are affine in z, y, and z. This is obvious, since R((O) is

a linear transformation. I

Claim 4.2: While expressions for C-functions and ACFs can contain cross-terms of

the form C"5fl, 3,S 11, or C,GCf, it should be clear that a 74 3l, that is, C, can

always be expressed as an afline function of Sa.

To derive this, consider the definition of a C-function (equation (4) in chapter

3) once more:

f( ) (N(), x) - (N(E), (aj(9) + bj))

Only the term (N(0), ai(O)) cc ild result in any troublesome terms, For a type (b)

constraint, N(O) is a fixed vector. For a type (a) constraint, N(0) is a rotated

normal of a face of A, and we have

(N(E), a1(0)) (N, a
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Finally, for type (c) constraints, N(O) is the cross product of e,,(O) and eb. This

results only in cross-terms of different angles:

(at(O),e,(o) X eb) = (ai(o), (ajCo) - ai(o)) X eb)

- (ai(O), a 1(0) X db - a-(0) X -)

= (eb, aj(0) X ai +( ))

A proof for the ACFs is very similar. s

4.4.1. Canonical Forms for C-functions and ACFs

Definition: The Linear Form for a C-function fR: X SO(3) -+ R is an equivalent

expression

f(z, y, z, 0) = Ejx + E.2 y + E 3z + E 4,

where E : SO(3) --* R (for i = 1, 2, 3, 4).
rr'.. . . .. .At.' f-N.._J._._ _ I- - .. /r'Pf1711 f!-- £_L I __ - /N• r_. .. s'__ t .

J IjIIJIUIi un; A 1! L(jtuLmU! &t L L yu a atU i tL LL. P of tr i I J ' /k I U I 4) IlI %-I -lULt. LLUIL J 10 1 __

anequiv:lent expression

f(z, y, z, V, 0, O,) = I'I sin 0 + F2 cos 0 + 3,

where

13X (0, 0) .- R. (i = 1, 2,3)

Definition: A Trigonometric Quadratic Form ('TQI'), (in 0) for an ACF g: S0(3)

R is an equivalent expression

(•b, 0, eb) =- GI sin 0 + G 2 cos • + G3,

whem ' where~G 0•:(¢ ) --. 1, 2, :-,3) .

The TQIs are defined here in 0 -of course we must also defne t~i,: TQFs in i¢

and in 0 in the natural way. ¢ will be our typical example angle br t i o

however.
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Before we proceed Ict us provide some intuition for these definitions. Imagine

deriving a linear form for a C-function, and setting the expression equal to zero.

The result is just an expression whose coefficients make explicit how the plane

equation of the face of the Minkowski solid changes with rotation.

A TQF (in j) is just a way of expressing C-functions and ACFs in terms of

the coefficients of sin 4, and cos 4,. Linear forms and TQI,'s will be useful canonical

foims fNr the intersection problem in N'J X SO(3). It is important to realize that the

coefficients Ei, Fi, and Gi are actually functions on the other degrees of freedom.

We see immediately from claims (4.1) and (4.2) that:

Claim 4.3: Every C-function can be expressed as a linear form and as a TQF in

4, 0, and 0; similarly, every ACF can be expressed as a TQF in V, 0, and 4.

4.4.2. Intersecting C-surfaces in R3 X SO(3)

When intersecting C-surfar.ps in S2 X S1 , we essentially eliminated variables in

a system of' equations. This corresponds exactly to "spending" degree.3 of freedom

to comply to two constraints. In W2 X S1, there were few choices for which

variables to eliminate. However, in R3 X SO(3), we have many more degrees of

freedom, and hence there are -nore choices for how to solve the intersection of

a set of constraints. For example, to construct the intersection manifold of three

constraints, we could spend all the translational degrees of freedom, which would

result ia parameterizing the intersection manifold by (0, 0, 4). Alternatively, we

could in principle eliminate the rotational degrees of freedom and parameterize

the intersection manifold by (x,y,z). hi the former case, we leave (0,0,0) as

independenl degrees of freedom: parameterizing the intersection manifold simply

involves solv ing the 3 constraints simultaneously for x, y, and z in terms of (4', 0,4,).

To move aiong their intersection, we arc free to plan any values for (0, 0,0), and

the parameters for the translational degrees of freedom will vary so as to comply

i.o tlhe simultaneous set of constraints. Obviously the choice of which degrees of

freedom should parameterize an intersection manifold is important; linear forms

and TQFs give us a geieral way of at.acking it. This approach is best illustrated

thrrotgi: the Following examples: '•'• •
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Example (i). A C-surface in linear form is an expression for a C-funcLion in linear

form set equal to zero. Two C-surfaces expressed in linear forin may be intersected

to yield a 4-dimensional intersection manifold parameterized 7 by (z, 0, 0, 0). This

amounts to simultaneously solving the equations

f(x, y, z, 0) =E,IT + E2 y + E 3z+E 4  0

9(X, y, z, o) =Ex + 4+ +

by first eliminating z and then solving for y. This yields expressions for X and

y in terms of (z, 0/, 0, 4); we say that (z, iP, 0, 4?) form a 4-parameter family for

the intersection manifold, and that x and y comply to the C-surfaces f and g as

(z, k, O, 4) are varied.

This intersection has the following geometric interpretation. Imagine holding

orientation constant at O1. Then Ei and Eý are all constant also. Intersecting f

and g at a constant orientation is equivalent to intersecting two planes in Wl. The

intersection is a line, and the position along the line may be parameterized by

the one remaining translational degree of freedom, z. The planes intersected are

exactly the planes of the faces of the Minkowski solid for f and g at orientation

Example (ii). The intersection manifold f(X) g(X) 0 from example (i) may

be intersected with another C-surface, h(X) "= 0, expressed in linear form. Suppose

z is eliminated. Then the intersaction manifold for f, g, and h is parameterized by

(i,, 0, 4). The translational degrees of freedom x, y, and z, will be expressed in terms

of the rotational degrees of freedom, and will slide along the intersection manifold

as rotations are chosen. The new intersection manifold f(X)-- g(X) = h(X) = 0 N

is a 3-dimensional sub-manifold of N"' X SO(3). This intersection has the followiig .. ,

geometric significance. Imagine holding orientation fixed at 01 once mor,;. The

intersection at a fixed orientation of f, g, and h is the intersection of three plane,,

ill 90. This "ntersection (if it exists) is a typically a point. If' O 1 is allowed i'o vary, r\~4 .\

the intersection point moves. The coordinates of the intersection point are th2 z,

Y, and z degrees of freedom as they comply to the intersection manifold.
7A.•mtuc t,hatt Lh constraintr I;rC' not, p11 ralhle, aid thatt U63 i Ix po.4iblc, etc.
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TExampkes (i) and (ii) show how to spend transiational degreez of freedom to

intersect C-surfaccs. In (i), we saw haat i4 is poss;.k:. to plan i;.otion along the

the 4-dimensional intersection man•foi wkih one translational and thtee rotational

degrees of freedom. (i) can be used wt plan i pure translationMl path romplying

to two C-surfaces. The tree translational parameter may esrmentially be chosen to

maximize progress in a search algorithm. Thic is precimely how cre :local expert"

in the implemented planner works.

One last note on linear forms: the dianussjon ad exa-npks above can be easily

.generalized to arbitrary kevel C-surfaces (iastead of C-Gsfaces- with level 0) by

increasing or decreasing E4 (the "constant term in ith e linear form) by a constant

equal to the level.

Intersecting Two TQFa

Consider a TQ' 9 (in 4') for either a C-function or a&. ACV',8 and suppose

further that the TQF has becn get equal to zero so that it, is actual'y a TQF .urface, r
kcr g, by -which we n~ea-n a iQr rot a AjVCur-IF ornn Lsuunu'ax".

Fr- sin 4-- +F 2 cos + + F 3  o N

Such a TQF can be expressed as:

2 ± +t " 2 + 2F2 3 cos€ + -(

The new expression is quadratic in cos 4. (This explains the name TQF). The

procedure for intersecting two quadratics is well kjtow.i. Such a procedure can

be used to intersect two quadratics of form (4.2) (i.e., with cos.4 trrated as the

q,adratic variable). Titus we can obviously intersect any two TQF suifaces. This

means that the ptocedure foI intersecting two quadratics can be applied to TQi"s of

C-surfaces ant of ACF boundaries. This immediately yiAlds an effective procedure

"Hl),'.1unliig oil whether thc 'l'TQI is a C-Cfr•ction or ACI, I-I, ftuncticus P" will have dilferent

ulocrcairm ,;, btt Llhi:i will mnt uuualt'r Fo;r t itlE ( imCIsioII.

"I",0 cxamnil-C, .•-.C \ i,,sto u,,l IOhH rn, (IS181), (i'. 175).



for constructing the intersection manifold of two C-surfaces, two ACF boundaries,

or a C-surface and an ACF bouudary while spending only rotational degrees of

freedom.

4.4.3. Intersecting Trajectories with C-Surfaces and ACF Boundaries in

#Zx so(3)

In this section we extend the method of (4.2.2) for intersecting arbitrary linear

pure translational and pure rotational trajectories with C-surfaces in R3 X SO(3).

Pure Translational Paths. A pure translational path can not stray out of an

applicability region. It is not hard to intersect a linear pure translational path with

a C-surface. Such a path can be represented as a line in 5t". At the fixed orientation

of the path, any C-surface can be represented as a plane in R3. Hence the problem

of intersecting a C-surface with a (linear) pure translational path is simply the

problem of intersecting a line with a plane. The linear form of any C-surface

directly provides the coefficients of this plane for any (applicable) orientation.

Note that in intersecting a pure translational trajectory frorm some configuratiou

X E F with a set of applicable C-surfaces, we need only consider C-functions which

are positive-valued at X.

Pure Rotational Paths. We restrict our attention to linear, pure rotations in

one rotational direction (i.e., ia ±¢, -0, _€), for example,

0(t) = k + kit(t E 1 )

(for some constants k0 and kJ). To intersect such a path with a C-surface (or ACF

boundary), we simply find the zeros of the appropriate TQF. For this example, we

would use the TQF (in 0) for the C-surface:

F, sin ,, +* F2 cos 0 + F.3 = 0. (4.3)

With motion strictly in €, the functions Fi will be constant, arid may be regarded
simply as the coefficients of a quadratic form. (4.3) is easily solved for the valwes of

which are its roots (see section 4.2.2). Now; depending on the solution technique,
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(4.3) may yield several roots. The correct root may be chosen aM follows: for a

C-surface, we choose the first root where the C-surface is applicable. For an ACF

boundary, we choose the first root where the associated C-surface is applicable.

This last step requires examining the other ACFs for the C-surface.

Completeness and Complexity for Rotational Trajcctories

We have seen that a continuous path through rotation space can be approximated

as closely ds desired by a series of linear motions along the rotational axes. We now

show that the number of path segments required grows linearly as the resolution

of the approximation becomes finer.

Definition: Let V be a vector space, and P and P' be trajectories in V. We say

that P1 approzimates P at resolution r if for all p' E P', the perpendicular distance

of p' to P is less than .

Proposition 4.4: A linear trajectory in a vector space can be approximated by a

number of path segrments along the axes, which increasei linearly as the resolution

Proof: Suppose V = R3, and P is a linear trajectory from u to v. Imagine

approximating P by linear motions along the ý, P, and ý axes. Segment P into k

sabpaths. From u, ;iitain each of the k - 1 subgoals (and v) by 3 linear motions

(along i, D, and -') from the previous subgoal. This yields a sequence P1 of 3k

motions which approximates P at resolution rk. We can bound - from above as
Th

follows:

I< !niiax~vUz ,IV YU AIU......t-I
TIC k I Ih 1 J

To achieve a particular resolution r, it is easy to choose the smallest k satisfying

the reverse inequality. We see immediately that k varies linearly with r. I

Let the angle space Q3 be the domain of a chart for SO(3), as described in

chapter 2. Then the angle space trajectory

p(t) -01 + tO
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for

O=atý ± bb + c4,

specifies a well-defined trajectory R(p(t)) in SO(3).

Proposition 4.5; We can approximate p as closely as desired by a sequence { qi } of

motions in Q 3 along the /, 0, and 4, directions. Furthermore, the size of the set

{ qi } grows only linearly as the resolution T becomes finer.

Proof. Immediate, from proposition (4.4). a

4.5. The Algebra System

The treatment here of the implemented algebra system is mercifully brief.

Given the discussion, the details, at least in principle, should be easily imagined

by most readers. In computer algebra these problems are well understood, and the

system does not make a significant contributio to that field. I would like to note,

however, that the algebra system is both massive and at the heart of the planning

system. It takes 12 hours for a dedicated VAX to op!,imize and compile the vector

form of the constraints (in Macsyma) into the primtit-vc functions of the Lisp algebra

system. On top of these primitives is built a more abstract system, which (for

example) can evaluate constraints, intersect constraints, intersect trajectories with

constraints, and rind zeros of constraints. The intersection and evaluation system

has au ormatic singularity handling (for division by zero, imaginary roots, alignment,

etc). For example, to intersect two C-surfaces (a la example (i)), the planning system

will typically specify a list of preferences for the translat'rnal parameterization of'

the intersection manifold. The system then attempts to construct an intersection

manifold with a high-ranked paramcterization, and on encountering singularities

will back up and try again.

It should now be clear how the algebra system for the planner is designed.

For each kind of constraint (C-function or ACF'), the algebra system contains

procedures which compute the coefficients of the linear form (for C-surfaces only),

and coeflicicnts of the TOPs. Each of these procedures can be thought of as a
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function of (1) the constraint, and (2) the parameters not explicit in the form (for

example, the rotation parameters for the x coefficient of a linear form). On top

of this is built a level of abstraction, so that for example the operation "compute

the sin ý coefficient of the TQF (in 0)" is defined on all constraints. Coefficients

of all possible forms are described by a total of 12 coefficients for the linear forms

of C-functions, 27 coefficients for the TQFs of the C-functions, and 18 coefficients

for the TQFs of the ACFs. (These functions correspond exactly to the functions

Ei, Fi, and Gi, above). All of these functions are constructed and optimized by

Macsyma running under NIL (Burke (1983)), and then converted into Lisp.

We have also experimented with precompiling functions for all possible

intersection manifolds (up to some degree).10 For intersection manifolds of degree

2 or 3, this is not hard, and in fact we have already illustrated all the necessary

mathematics in this chapter. Intersection manifolds of higher degrees may be

constructed by solving for the submanifold representing the simultaneous satisfaction
of sever-al constraints, for -x m:ple, __" -_ltsilaiiltt _il u" -- ... . . W .. "

.- re_,lillaL UIJA.I W6U1lllU bu1AlL~•l~

two TQFs such as (4.2). When higher degrees are considered, this becomes

quitc complicated, especially when we allow different parameterizations of the

intersection manifolds. Construction of intersection manifolds of higher degree may

be easier when different representations for rotations-such as unit quaternions-are

employed. This appears a fruitful direction for future research. In practice, we view

it as preferable, wherever possible, to obtain the values of coefficients of a form

at a certain ccnfiguration, and then to plan locally while keeping these coellicients

fixed. Thus for example, we might compute the coefficients of the linear forms of

two C-surfaces at a given orientation, and then intersect the resulting planes to

obtain a translational path along their intersection. The structure of the forms ..

makes this easy to do. For example, rotating the moving object (say, in ý) until

it hits a constraint is mathematically a complicated operation. All we need do,

however, is find the coefficients of the TQF in 0, and supply them to a procedure

in the .dgcbra s3 stein which finds the zeros of TQF surfaces. (But see chapter 5 for

the details of the applicability set computation).

"°The dgrree of an intcrscrtion ( an-ifold is .imnply the nurmber Of cornstraints intersected there.
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4.6. Rplated Issues in R3 X SO(3)

4.6.1. Normals to C-surraces

Let f be an applicable C-function and X a configuration on a level C-surface

for f. When an appropriate inner product is defined on the tangent space," the

normal to the C-surface at X is the gradient of the C-function f evaluated at f.

Normals to C-surfaces are of great importance for motion planning. The gradient

may be computed as follows: first the coefficients for the linear form of f (evaluated

at X) are obtained:

f(X) -- E, x + E 2y + E 3 z + E 4 .

Clearly, E,, E and To obtain the partial derivatives in the

rotational direction, we find then coeflicients of the TQFs (evaluated at X)

f(X) = F1 sin 0 + F2 cos# + P 3

to obtain
a -_ cos -F 2 sin.

4.6.2. C-functions, Potential Fields, Penalty Functions, and Morse Theory:

A Conjecture

A popular approximate algorithm for collision avoidance places "potential

fields" around the obstacles (either in real space or in some C-Space), and attempts

to navigate the reference point through a trough of least resistance. The obstacles

may be thought of as having a "charge" which repels the robot, arnd the goal has an

inverse charge which "attracts" it. The potential field method is closely related to

the so-called "Morse Theoretic" 12 approach to motion planniug, and lends itself to

fast control-loop algorithms which can exercise real-time dynamic control of robot

arms with few degrees of freedom, in simple environments. As might be expected,

the method works best for robots that can be approximated by points or spheres. A

proper potential function increases as the robot approaches the obstacle, and goes

"Sec sec. 2.4.2 and Erdmannir (1 984).
"12Which t\a knhi it. a,$m rIrom Mornic Thcory ir difficrritial topology.
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to infinity at the obstacle boundary. Traditioially, the potential function is chosen

somewhat arbitrarily, with much emphasis on the closeness of the "fit" of the

potential surfaces about the real-space obstacles, and with understandable concern

for the computability of such functions by specific control hardware. With the

theoretical tools we have developed, it is now possible to give a potential function in

configuration space which is "exact." For a configuration X, let f be a C-funiction i

representing the maximum, applicable, non-redundant constraint from one family.

For each such f, we conjecture that a good potential field function would be:

P(X) J (f(X)) -k, if f(X) > 0,

loo, if f(V) -- 0.

for some k > 2. Whether or not such penalty functions could be used in devising

a fast real-time control algorithm is, of course, another question. The suggestion is --

primarily intended to show that there is a representation on which (in principle)

icss approximate potential field metrhods might be based,.

L 
Fu
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5
Moving Through Rotation Space

5.1. Introduction

In this chapter we discuss some of the computational issues involved in

planning paths involving three dimensional rotations. The primary issue is that

of keeping track of which constraints (C-functions) are applicable as orientation

changes. In principle it is possible to intersect paths with all ACF boundaries, and

thus to determine which applicability regions the path traverses and crosses. It is

also possible, in principle, to compute the applicability regions a priori, before the

planning begins.' In practice this is computationally infeasible. Even for simple

environments, there are typically thousands of cnmstraints; ac_.h of which hnq at.

least 3 associated type (a) and (b) ACFs. We will investigate alternative strategies

which exploit coherence in how the set of applicable functions changes as the

robot moves continuously through rotation space. In previous chapters (particularly

chapter 4) we showed how to intersect trajectories with C-surfaces and ACFs.

The applicability set for an orientation E is the set of all applicable constraints

(C-functions) there. Clea, ly, there are regions on SO(3) for which the applicability

set is invariant; orientations in the interior of these regions correspond to orientations

where no edges or faces of the robot are aligned with the edges or faces of any

'IThis approach is 4i tilar to it, critical rugi ion computat.iofis sggcscid by Schiwartz Mid Shrir ir
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obstacle. For a fixed o- fiatiun GI, we comp)Ute the apkilicubility set by examining

the sigyns ot the ACFs for all 0-functions (sechapter11 3). oweVer, thi6 is deCArly

not av opt-raton we. wish to repeat very ollten, alld the apiaitySAt calculatioqn. -

Proced .ure Should 1)e meinoized. (A. rneroizcd procedure records. the aiiswer ror a4

given ithput, so it will not have to be recorpirpted. Tinstead, it car, simply be loock d tip

in a tabb') As the robot. maves in rotation. space, certainl ;onlstsaznts widl expire asp

the pal-h moves outi of their applicability region, and ot~her constrain(,s. wib become.

act ive as we move into Lucir applicabilty region. jThs sug1ge,-.stha an rncrermcna

Up~dat algouilthi should be possible: we imiagine detcecting when constraints expire,

and when niew constraints become active and constructiag a &'leteleisl of cexpired.410Ir

coni5\ýr ai itLs anmd an A ddltid of n ew cceujstr ai nts. T he applI-I c hiltb y _-e t is, theni updatLed4f

by me~ans of the DeletelisL, arnd Addlist. V1

5i.2. 'The App~cabillity iDecom~poshtion foCr' S0(3)

ait Ith'ils capt&A, wcvo il lfi~ ~as ntaz alcigC. wh~ich does r~ot use

an adatestraegy.WetLen. present ha mow:c sophisticated pr-ocedure, callfxd thie

,9 tpdclc algorithmn, whicýh is anl inremncLLal iapdakx itrategy. We have pt:rforxucýd

fundaýrneta~iLlYuig ohajrt 2. rimplcnient, h oa operator whaevlich

wasdicusedinchpte 2 Bthalgriliis.hae hcsam a,_.yijjot,7centj.A)exity. >
Although we have applied both to the find.-path problemn, they are designied forq

funamet~alydifferent tasks. The naive algorithm is Specialized for at particular

find-path operator, while the updatc algorithm is a general tool for comiplituik a

decomposition of C-Space for spatial Planning.

Te update sta ategy addresse2.i the fundamental piub~leni of appl0 r;Aabiblty sEt

cotipimttatLions in a continuous space. Without the g9 algorithim, tlio-re exists crity

the "discrete" applicability set comiputationt, which giveii cite pni•,t lit ',O(:-) Carl ~ ~ f~

(leternhlne the set, of' all applicable C-functions. With an inecrmetital kiJ)(atc sI ttt aq-, -

we carn map out regions on S0(3) fur which the applicabil~y set is iiivadrcurt. Tl t

botandajies of these regions are AC!2 boundlaries. Let, 1(O) b-' the applicabiALiy

set at 0 C S0(3), arid = be a binary relationi on S(0'(3) such that 61 C::. 0' 1 t

MAnd onily if 11(O) 1'(0'). Clearly, 2= Is art equivalence,. relation ont SO(3), an~d73

30(3) is (ICconlposed by winto dirsjoinat equiivalence classes where the ;pp! I( abihliy
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eot is invarian,. W~e call this the appitCability dccornpositiorn for SO(3). Computing

this deccomposition. is a fundamental step iii reducing continuous spatial platiflirg

problems to discmtte (omflputat~ional problems.

We WHI shoWv howY .0 compute these decompositions for secticon:, of S0(3) in

any of~ thz dii ecLioias S { ±ýb, ±i, ±ý }, In particular: The incremental updlatkc

strategy computes a projection of the applicability dccotnoiOs~tiof onto a subspace

of SO(3) which Is isontorphic to 51. In principle it is not hard to generalike

these sections to arbitrary rotational sliCcS; algebrvically this entails solving the

intersection of' a TQF with an arbitrary pure rotation. As we have noticed, any

rotation of inteýrest can be approximnated as closely as desired be a sequence of

rotations in S, with no lo.4s of comrpletene.,s (at a givc.n resolution).

The naive algorithm, onl the other hand, is highly specialize~d to the partictmlaf

problem of rotating to a coniiLraint. It does not address the more fundamental
nrohiern of (leconmfos"-no,' .SO11) int.n anrnl;r~-ui,;I;lv rpIn.-i~Jl"nr-f ro~n r~

believe Ohat the applicability decompozition is also important tof. planning problems

othver than rind-path, pa~rticularly, for find-space, fluie-motion, anid planning with

uncertainty. llowever, in practice the naive algorithm has proved faster for rotating -

to P. constraint than any incremmicial algorithmt we have dc-vi~scd. It is gatfyling t~o

findl that both stralucgies have the saine xsymmyptotic, complexity; hioweveir, we have

nio strong indlication that Lthc O(A! hog N) bound we demon',tratc is optimal, aind

5.3. A Naive Algorithlit Without anr Updalhe Strategy

We1111 b Ursiilrigjanak~e algorithm fot moving in oaitspcwhh
doesi not cmi'loy an update strategy. We W'Shk to de!ýAgri M1~ ei4ClIC we pOCt dUre Whit -

r/ ~~is to be given ;tsa ~1rt cut, flgm Clols, a ga tv oký AA .

an1d a goal cooifigti rtiomi q. TIb'- goall cofi lgitratiomi difficrs fromi s ontly 'ii th at tilt

goal angle. in thu & dire-,1iott will 1w g,, instead of' Th. le proctdu fc d'tvrimlicms

if' Ole roblot Call reach 9 ;'Ao.ikJ; Ow~ tratj,-ctor in ik, or whethier it wvill strike an

ohs t;Nci J wic cast ii t rehim r(he ("-sur face 110.t anld till. imitelsec tlom algle..

(W s i~Ic e o C yjýJtj: Lt) Jjrmcthe v w 1 IL -ai)i -of *rt al. the ltrSCii pointQ.)
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(a) (b) (c)

Let C be the set of all C-surfaces. Calculate the intersection of the trajectory

P(t) = S+ ta

with evecy C-surface in, C (whether applinable or not). Each such intersection can

be expressd us a single angular value (i.e., the value of t or a for which p(i) V

lies on the C-surface) and hence as a single point on the unit circle. We can

order tlhc inters-ctiorn points by thkir intersection angle with a C-surface. Sort the

intetsection-s around the circle. Then traverse the intersections on the circle in

direction a from s, and find the first intersection which is both applicable and on

the boundary of a G- 3 pacc obstacle. In 4.2.2 we gave an algorithm for how this

may be dcter-nined.

b.f. Update Strategics: Exarmpl

We now proceed to describe how an updatL strategy works. If cuonstraints could rc.', -

S•79,I,



aiection: (M!iWJS THEIR) Start: 2.42. Goal: sU 6.4

ht ., Sic th ,,.,.si re-pc,!tht n -ufr-i ln rri riitajxi C/'
-~ue. -1•e

.~race ln -,.eLteou o u,- zt ,nxers.•cln j r+P•.•"

Figure 5.2. As eh.h hammer rotate• in the -9 direction trom (@u L,.L2 •!i.••,O thy btix~s

in thr lower left olhow the C-S;pae obstacle bouindarir• azid A•F" •Jtrj'1:• •ha th• tr:jac~or• !
haiL.. Sincohe hjactmmer is in frcc-spacec, •.t hails no C-.urf&,c.'. l|bwct'•r, jt acr•tsi ina'ay t\CI•b•

boundariaa.

expire anci become active "awbitrarily", this proh),%vm might still b-- for:-,idabSe.

However the fol;o.,ing observation makes things mucwh cmiwtr:

Claim (5.1): When a constraint expires, anoOter "•eghbaring ctaint

becomes active.

For example, consider figure 5.1, which deFicts a cro•-*y-fcltt t, t iec a : 'i

moving above an obstacle face f. As A translates, it rct.a.te, in d~ection In

5.1a, constraint (ti, f) is applicable, and (v2, f) is not.. AL. 5-1.11, ho.cvvvr, ',e to,.

out of the applicability region for (vl f) and (vf, 1w:c-,mes acti,.. ,4.1b is .. 4'

the boundacy of the applicability regions, and bott. LonLrtaint.- Ps$ apl.(l.be. 6'.y

5.1c, however, vj ,f) has expire(,. (v2,I) has rcpvw:e, (ý , f)i• t,., ),. .t.011:

set. (v2, f) cicrly seem= like a neighboring const'ai,ý,. to ( V ), i,, '0 d V . S. ' wi

aic adjacent vertices on the :Age graph of A. Wc would. hlic to dcv:se an uprx .,
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s~trategy which, given a IDeletalist vo11 c):piring constraints, could enumerate, a small

by nei. bcrAingw sran IlowcŽvet, the neighborhood function is somewhat mnore

complicated thap :n. Okis iirapie example, Fo- i-i~tancc, iiiuaghic that A were rotating

towards tbc viewpoint (Out of the Page), 1-ading wvith veitcx u.1 (see figure 5.4). It

is possible for constraints ('02.f, ý14 f), and (v.1, f) to iceplace (vi, f), if the faces

f and { Vi3 V2, V3, V4 I are parallel when~ (vi, f) expirea. Clcarl-v V3 is also "near" v1,

bvit not as near as V2 arnd v,1. To expb-it claim (5.1.), it reni-ins to be seen just

what we mean by a "neighboring constraint,." We should emphasize that the update

strategy does not predict exactly whirlh constraitU~s will bec~ome. active, but merely

a set of candidate constraifits, some of which must replace the expiring constraints

in the applicability set.I ~5.5. Using Update Strategies r

Let us modify the naive algorithim to incorporote wi updaite strategy At

configuration -i, we compute the applic-all 4ity stt. The trajectory p is next intersected

with all C-iiurfaccs in the applicabl.ity -- At, and x ii.h all ACF b4oundaries for these

C-surfaces. The two lists of intersections are P.-irgied and sorted around the unit

circle. (The sort Itey, once inorc, is the irNtcr-iectiov angle). We call this sorted

strwi.r~rte ol' C-surfacc and ACF ins:!rscct'L-iuým thc i.'tersection queue, since it a

prioiity queuc cont~aining intersections. An fo-i*.'y in the ititerscu '.ion qv-Due is a pair:

(~C-surface orAi',A~l of int-cisectioit).

'Wlc theit tr%\,cr;-e Oilt ,Ionse~ ii e ii, l rder Fromn s in direction &, taking

I'lhe foit1oWirq-Y Zectioi's WLCR UWe Pie~Lpr a C.-satrface or an ACF~ intersection:

(1) Whý %,io ACP hO0:Ld-'V3 iý ; 6i, a C-surf'ace has expired. I..!t the angle of

i~ecto b/. a".. Sovvivles C-s&.r1'ACCS expire at once; in this case their

ACP~t~U OL will a~i hav,2 0L, ir\A".2rrsei-tion angle on the circle. Determine

al the C-st iate:, ttial- c'.plit i~t cy, 'n'i scan down the intcrsection qjueue until

an iterLý,O:CTto 1.tk gi edtr .:, (wCth respect to kiirection &) is found). rhese

Csu i~accs constittoe t~lt 'c!? lj AtAuie we- have an, updatc procedure, which



can determine an Addlist of newly active C-surfaces given a I)eletelist of expiring

C-surfaces. Cali the updai.c procedure with the Deletelist, to determine the Addlist.

(i) Delete all C-sur ec.:s in i.~ie I)eletclist from the Applicability set.

(iN) Delete all C-surraces in the Dc!etclist froi: the iaLersectiort queue.

(iii) Delete all the ACFs of C-surfaces in the 1. eletclist from the intersection queue.

(iv) Create an Addl'st intersection queue, i.e., a sorted structure containing the
intersections of all C-surfaces in the Addlist, and all AC!P boundaries of these
C-surfaces, with the trajectory p.

(v) Merge the Addlist intersection queue with the old intersection queue.

(2) When encountering a C-surface intersection, we know the C-surface must

be applicable, since we have not yet hit an ACF boundary which could invalidate it.

(This is essentially the correctness criterion maintained by step (1) of the algorithm).

Test to see if the intersection is on the boundary of the C-Space obstacle. Note

that this operation typically requires knowing the appiicability set.

We then continue traversina the intersection queue (of course, resuming

traversal the next c slightly beyond al in the & di, ection) until either an obstacle

is hit or the goal angle is reached. As the intersection queue is traversed, steps

(1) and (2) are performed tu update the queue and detect collisions whenever an

ACF..boundary or C-surface (respectively) is crcssed. SO(3) is typically quite dense

in ACF boundaries: see figure 5.2. In this figure, the small boxes depict one

dimensional slices (isomorphic to S') of rotation space in the -b direction. The

radians, and the heavy line extending out of the circle indicates the goal angle,

which is 0 =- 0. The intersect~ons of the trajectory with C-surfaces are shown in the

Ieft box (there are none). The intersections of the trajectory with ACF boundaries

are shown in the right box. Each line indicates the angle of intersection or an V

ACF boundary. The applicability set is invariant between intersection points. The

moving object is shown rotating between the start and goal angle. The C-surfaces V

and ACls were generat.ed by the mcving object and obstacles shown. !iowvevr, the

actual size of each Addlist is usually small. The algorithm works by maintaining a F

correct applicability set as we move in &, and by modifying the inter3ection queue

to remove C-surface and ACF inters.ections that are not applicable. N
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5$.. UprAc Stlratcg~ie%

In this section we finially discuss spccific update strategies,. .Xn update strategy

has two parts: first, given a Delet-eYA elc expiriing constraints, it must predict a

set of C-funictions guaranteed to contain the Addlist. Second, it must test each of

these predictions to determine which are. really appikable. rThe latter operaticnt is,

coniceptually trivial, but since it is exesvwe wish tk- makc the prediction set

as sumall as, possiible. For examuple, predicting C, the set of alX C-functions is clearly

comrea, but not 'very ussful.

A tcttei'c approxiunatizal vould beý as foi'owHs: given a Du1,Ztdist, detcrmiiie

all Otin C. Camiilc(½. familiies or'(~ufcs it re~presen)ts. A safe pfedictiorn

WOU11J cOMPrise A311 OWe (>runACbonsi it' theCse faraiicc-, since clearly an- expiring
'constrlint wvii! bt re[)e y amothey ecrnstr:aint. froirk its cn~vr, famtily. In practice

this, approxunr.atiol biaan proved us ,tlhowev~ei, it is not the best wve can do. Inl

jpar~ctduar, noife that. even two cuufIUs wil& jti(C;Lae k flt 4 ypk kit) (2'-zuiidakcc-S, Ayi

' -ý;;acs an "I'-V" ' ý%4 .pc' (C) C-'f cs. Uzcctj tlie C-a~l approxim;nlou is

not a very tight up.rbound ffo7- tbe rc~plcemer:;.t s,1(, t&az is, Jhe Addlist Cot a

Let Vp, $, and Tj. denote e ;'rtcct dges, arnd l'-tce of polyliwdron P'. iot

a roaving polylhedrun A and an ob4.epolyhedr'7on B, wevt Cciie-tpt. the cauily N

To beý for run1, thisý should, strictly, spýeak-ita, 6rs condecd h don airn of a t'tj n~tior

G, witden ni[s piris of geiv-c Jots to -t;hetuec tion spa.-co of C- Cur;ctioa , fbut

wiktee it s 59 nO aniibigvity vc( w*vli sJiceak oF' a pai- (g,i:q94) ;up r':a c~szting tili

CoUlSprkl Cn funC601i C(q4, Yl iw

2.f i\ CXnII A '- ct~l~toxzu~ )g~W U m:11 RUc im. tlile h no ni'gbl rhe od

nraj; oin a polyhedron P, "

10. 1 '
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(where * is the Kleene star denoting caor-tre) such that the set

9(,t) K,,g: (5.1)

is the am.l-lest ,aa.ximal replac:cmeat sct fo.,,r (,A. fq.). In other words, we want (5.1)

to contain all possible rcplacemnent set.s for (9A, g91), no matter what the rotational

motion; but we also wigh (51) to be as small as possible so as to minimize the

ACF computations. It is pa-isihle fc.r 9. to be local in character: although several

constrai•ts in a fanrdy may expire simuL"aneously, all that we require is that the

union of their replaccraeet seto i. corruet. •..-•

We conjecture it might be posn1i1hle to find exact--or at least smaller replacement

sets by taking the specific motion ita(o account. Such a strategy has not yet. been

dkeveloped, however.

6.6.I. Mathematical irinaries

Tn chhapter I-, wc ga•ve an inforrm.al definition (by example) of the boundary and

coboundary operators. YR','.i now define and employ two related operators which can

be COhLpo5Qd to de&.1n0 ooArafur: such as "the faces which contain vertices vt, v2,

and v3" and "the edge:- which- are incident at the vertices of these faces."

II this uctliyfl va" define- the discrete boundary and coboundary operators.

Consider F finite collection of cells, S. The discrete boundary and di-srete coboundary

of , de~noted 05 and 6S, are defined as follows:

o(b ivr,~ oMr udcbudr < .erators,,%

Thcý dis ch rets b'Jiiary and coboundary operators have very different properties

Ircut thOlt! mIo a! boundary anrd coboundavy operators. For example, if f is a face,

ti.eri W3.1 = 0, while 0 fl = ixiettf). To se. this, observe that

Al181 •.?g,2%?V
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In Fact, for any "well hc-bavcd," object P (and in particular, any polytope), 82 P 0

-,nd 32J1, (this is a fundamneWtal theorema of topnoy). However, two (or more)

app~icatioii. of'the discrete bmoidary or cobour'dary operator will not, in general,

yid;d 0.

Flcainpiea: ~(3 ( 1 , V2 , V3f) i-; the sA of face~s.F which contain at leas9t one of the vertices
i 2 -2-2

V,, V2<r v3. Since fu.r one face,, f~ =- vert(f), then 3 49 8 (V (, V)2, V)3)

is the vertices of all the faces 1,. The set of edges inckicnt at these vertices is

C . .Cfl4C YVflct I.ý 42- 1, ":7Q1 '.ý U J.t) 00~7 b'¶

Elýementfary Rcevvhw:. Boundar-y, (Jobutuidary, and Star

We must show that the discrete boun,--ary and coboundary oper-ators; are well.
r

behiaved. Wcv& ill do .5-- by iretiga formial dg.finLix,ýc of 3 (and tl) on a single

cihai. IR'eaders whbo have c.:tca'výi!.cýrcd a b-it c-f hoinology willI find the: lenimist ration

t~ra i:sparent. Others mni-,y wish to U~kt this sectiont on fai-1i. and to skip to the next

sýctionl, whv~re we aenuac the titai. oFerator.

Discrete boxindary and coboundlary opcratuci , can be considered as the ordinary

boukt~daiy -and c~obouradary "inoildio orientatic'n." We -x:;Lh'V a-, tollows. (For a

mare conti Aclensivt: acco urt -see any te~xtbook oyi eletnenitary topology, for exarv ple,

Ifockiins aand Young (1061)).

Lnet t-! an; arbitrary cricuteld com~plex, of abktract Cells, and 2- anl a-,rbit~ary

(add1 ic~ywt itten) abcliain groujp. Au n-duinensioqial chain on the co- plc K with)*)'

c~ocdlicenuh;~ ý'I 2 ýs\ hunctio- 'll *c, apping oritoted T. celk, of K to Z, jjCj) t, it. ifA

cj..4-) z' ti:; 11 c "- ) -- ---z. An arbkr.ary n-chain crs oa K can be written as

the fkwinua lilnear comy-bilation

%1 C



"where z- ci(+u?). The boundary operator a is a mapping from n-chains to

(n - I)--chains. a(zi. a') is an (n - 1)-chain which has non-zero coefficients only on

the (n - 1)-faces of the cell a0. Formally, let [an, aft- 1 be the incidence number for

an and a"-I that is

'0, if an-o is not a face of a')

[a"n, n-1] -- 1, if an-1 is a positively-oriented face of an,

I-1, if an-1 is a negatively-oriented face of an.

Hence,

To factor out the effect of orientation, we define the discrete boundary operator as

follows:

Discrete coboundary is defined analogously.

The' Star Opei'ator

Let P) be a polyheldron. Any cell k is a face of itself, although it is not a proper

face. A proper face of P must be lower in dimncnsion than P: If an n-dimneiitsional

cell k is on the boundary of P, L.,en we call I. an proper n-face of P. Titus edges

are proper 1-faces, and vertices proper 0-faces of' a 3-dimensional polyhedron. Let

K be sorie complex of cells. If k is a n-face of K, then we write K > k. We will

usually xssumnc that a face is a proper face.

Now, let E be sorie set of cells in K. The star of E (;n K) is defined by % %

185



St(Z2, K) = {or C K 1 (3 r C ), a > T},

i.e., the set of all cells in K that contain a member of E in their boundary. When

there is no ambiguity we will simply write St(E). (Giblin (1977), Hocking and Young

(1961)).

For a cell k, define 6°k = k, 6 k -- 6k, and 2 k 6(•k), (etc). We see

immediately that the star of { k } may be computed as

°
St({ k})= U 'k.

Using this observation, we have implemented the star operator by recording the

boundary and coboundary of each cell in the geometric model.

5.G.2. Local Computation of Renlacmecnt Sets

Type (a) and (b) Constraints r

Consider figure 5.3. (vi, f) denotes a type (b) constraint. Consider any rotational

motion from the configuration shown. Assume this rotation will cause (vi,f) to

expire. We wish to determine the maximal possible type (b) replacement set for

(vIf), that is, the set of neighboriug type (b) constraints which could replace (v7, f)

under any coiice;vable rotation.

Consider the set

0(ýVl - (V, } X f(5.2)

SvI = 6vl is just the edges which meet at vi. The discrete boundary of these

edges is simply the collection of their vertices. vi is delete(d, since it is expiring.

Now, consider a rotational motion which causes (v1 , f) to expire. (5.2) will contain

replacement type (b) constraints. llowever, (5.2) is not maximal: consider a rotation

which causes (vl, f) to expire at some orientatio~n at which a face f' containing vi 6

is parallel to f. (See figure 5.4). Then all the vertices of f' are replacements for vi,186N



Figure 5.3.

that is, the type (b) replacement set is (vert(f)--{v}) {f }. In general, the

maximal predicted type (b) zeplacement set for (vi, f) is

-r(l I K)/', (J I I'z
'a. q Vi -I 1 1) ^ I. .rP

By similar analysis, we see the following claims:

Claim (5.3): When (vi, f) expires, so will at least one type (c) constraint with

generators in

Claim (5..4): See figure 5.5. When a type (c) constraint (ea, el) expires, so must

some type (b) constraint with generators in

49C. X (Seb.

1187
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FiguJre 5.4. (a) A is rotatng sb,,e fact- f, out of time page, (towards the eyepoint). f' is the

-Jiiible face, with vertices t1', v2 , t,, an.d v,. (b), (c) show a section through f' as A rotates.

When f and f' are parallel, 1)2, v3, anti 14 allC active a v1 expires. This is a singular

point; as A cortinreb to rot;Ar, vs and i,, expire, and v3 remains applicable. The instantaneous
repl-eaiciAt set for v; i:) t(.rt(f') - (,I I .

This aralysis is, of course, symrnmtric for type (a) constraints. In this case. f

would be ii-terpraetd as a face cf A and v1 as an obstacle vertex. The equations

given all work wherb the generator pairs are reversed.

Ciaims (5.3) auii (5.4) are particularly interesting, in that they suggest that

we can detect all expiring type (.) constraints by examining ý,hc ACFs of type (a)

and (b) constraints aloan•.

5.6.3. Definition of the Neighborhood Mapping for the Replacement

Gene.rators

The replaccment set in (5.3) maken a tertain amount of sense: the replacements I
for an expirinig generator vi are to be foumld m the faces containing vj. On a

polyhedron 1, the general neighborhood function 9 is a simrple generalizatixn of

188
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Fiax;re 5.5. Section through Cb. ,= {v, v}.

(5.3): k:

St(vert('), aP),

that is, e9(k) is the set of all cells which contain vertices of k a faces.

Let P be a Deletelist. The smallest maximal replacement Fet for P is

U 9(9A() 9(g1x)-
(g.9,,g)E D

T'is particular formulation requires that we ignore "nonsense" pairings such

as all ranmbcrs of VA X VIj. This is easily accomplished by appropriate construction

of the function C mapping pairs of generators to the function space of C-functions.

'c- cenied the domain of C to OA X 5B3, and map all gcnerator pairs except those

iV:I (Y.XYiU(VA X Y11)U(Cet X elf) to 0.

.4



A Correctness Proof for 9

We shall now argue that 9 is the correct mapping to predict smallest maximal

replacement sets. Let (gA, gnj) be an expiring constraint at some orientation 0. The

replacement set for a constraint is the Cartesian product of the the replacement

sets for its generators. Hence the the replacement set for (gA, g91) is r(gA) X r(gjj).

Consider the replacement set r(9A) for 9A, i.e.., the set of constraints

r(gA) X { 9}

which will replace (gA, g1u). This set of constraints will become active at orientation

0, while (YA, gB) expires. Let

G = }U r(9A).

Note that, (1) all constraints in G X { gOl } must be applicable at orientation 6, and
(2) 0 musL lie on the boundary of each of their applicabliiiy regions in OUk30(3). Vv~e :.

say that at 0 each g E G is in ACF boundary condition. Note further that, r(9A) ,

is not a predictive replacement set, but any actual replacement set for a generator

9A under some arbitrary rotation.

We will first show that all g E5 G are coplanar. ,_:

All ACFs are defined in termas of a contact vertex and an applicability wrel • t2x

(see chapter 3). The contact vertex is brought to rest on soine applicability plane €f•,;

(whichl is parallel to a face or the other polyhedron), and the applicability vertex

is constrained to lie above that plane. When a constraint is in ACF boundary

condition, then both the contact vertex and the applicability vertex of at least one

of its ACFs are constrained to lie on the applicability plane. (We consider type (c)

constraints to be composed of four such ACM's, two of which are type (a) and two

or which are type (b) ACFs). In addition, observe that each line segmnnt I
(Applicability vertex, Contact ve
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lies on some edge of either polyhedron A or polyhedron B. In fact, these cdgcs,

which we term applicability edges, cover the edge graphs of both polyhedra, although

the mapping is many-one. We are given a generator 9A for a constraint (gA, g91).

The constraint is placed in ACF boundary condition. This requires aligning an

(applicability) edge of A with a face of 13 (or vicc versa). (This point is fundamental

to understanding the correctness argument: if both contact vertex and applicability

vertex must lie on the applicability plane, then the applicability edge, which is

an actual edge of A, must be aligned with the plane). We are then asked to find

all constraints which can be simultaneously placed in ACF boundary condition.

This is equivalent to askiiig, "Givwn one edge of A aligned with some face of

B, and maintaining this alignment, what additional edges can simultaneously be

aligned with faces of B, such that all associated constraints are in ACF boundary

condition?" (By associated constraints we mean the following: the aligned edge is

considered as an applicabilitr edge. Since the applicability edges cover the edges

of the polyhedra, the associated constraints for an applicability edge eA are those

C-functions for which the orientation of eA dUelifnIiiiL.aFppl•i ablit.,

Now, by fixing an edge eA at some arbitraiy aligned orientation (with a

face of B), we retain one rotational degree of freedom 5 about eA. We wish to

choose this rotation such that (1) tie constraint associated with eA (i.e., (9A,g1))

remains applicable (and of course, in boundary condition), and (2) a maximal set

01 constraints is simultaneously placed in boundary condition. The replacement set

we compute is the uniun uf these mxima!e...* (2)_- rquires. a. maximal number of

additional edge alignmaents, and must also preserve the disjoint interior criterion.

So choosing 0 so as to rmaximize the number of edge alignmenu.s propagates the

alignment constraint. Clearly, by propagating the alignment constraint, we obtain

a set of coplanar edges (recall that A and B are convex). each edge represents a

contact, vertex and aln appllicability vertex for (one or more) ACI's in applicability

boundary condition. The associated generators must also be coplanar.

We have seen that all replacement generators r(ga) must be coplanar with
9A" (As asuatl, there exist3 a symmetric argument for r(gj;)). Given an expiring

generator gl, on a polyhedron I', we wish to predict roplacelnient sets. Replacement

I r.VI
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sets are obtained from maximal sets of coplanar generators which contain vertices

of gp. Clearly, the maximal coplanar sets of generators for a convex polyhedron

are exactly its faces (and their boundaries). Hence, to predict replacement sets, we

must find the set of faces of P (along with their boundarics) that contain vertices

of 9p. This set is

.9g)=St(vert(ap), 9P). g

F 5.7. Analysis and Evaluation

We have implemented algorithmrs for moving in sonfic selected rotational

direction until cither the goal or a C-surface is reached: The -naive algorithm (see

section 5.3), the predictive update algorithm based on the C-surface family as a

loose maximal bound on the replacement set (section 5.6), and the incremental

update algorithm based on .9 (section 5.6.3). We next show that the ntaive algorithm

arid the g algorithm both have the samie asymptotic complexity. This means that,

their performance will largely depiend on t~he con~tant factots in the co;i.putation.

We discuss emnpirkcal rieslt's Wo indicate the size of these constants.

5.7.1. Complexity

Naive Algorithm: 0(n logn)

Let N be the number of C-surfaces in the enviro;:ncrnt (including non-applicable

C-surfaces). If the moving object is made up of mro convex polyhedra with ko

generators each, and the obstacle environment comprises nn convx- -.y'kedra

with jo generators each, then clearly N jokomono. The complexity of the naive V
algorithm is as follows:

(i) Intersect trajectory with all C-surfaces (0(N)).

(4i) Sort. intersections around S'. (O(N log N)).

(iii) For cach intersection, d(Acrminiu if it is applicable and on thc boundary of a
C-Space obstacle. First, test to see if the C-suirface is applicable by examining
its ACIPs. If so, there are two options: (1) if the applicability sct. is knowni at thz
iiiterucction point, we can teM. to see if the othcr C-functions in the family are
negative or zero. (2) If ilic applicability set is niot, known at the Intersection point,
we can coumpute the displaced faCC or the Minkowski solid corresponding t, the

two generators for the C-suirface. Next, test to see whether Owe intersection point

192 * .
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Hlowever, (2) needs only examine the generators of a constraint, and allows this
step to be O(N). (O(N)).

We see that the complexity of the naive algorithm is O(N log N).

.9 Update Algorithm: O(N log N)

The complexity of the g update algorithm is as follows:

(i) Intersect trajectory with all applicable C-suriaccs and theii -A.CFs Lef, the
number of ap:plicable C-surfaces be X < N, and the numbe of ACFs per
C-surface be a. (X(1 + a) intersections ==- OQ()).

(ii) Sort the intersections around S'. (O(N log i.)).
(iii) For each intersection: Sort, add, and delete j C-surfaces from the intersection

queue. (O(j log )).

This yields complexity:

N N N N
log -+ jlog j = -!(logN - log k) + -- (j logj)

= O(N log N). NM

In the next section, we justify treating k as a constant.

Actual Performance

In practice, the naive algorithm has run faster than the . update algorithm

for the specific problem of rotating until a C-surface (or the goal) is reached. As the

complexity analysis has shown, since both algorithms are O(N log N), the difference

in performance will be due to different constant factors. A good estimate for k is

10. For example, in a typical environment with 624 type (a), 704 type (b), and 1872

type (c) C-surfaces, 4 sample applicability sets have sizes 353, 362, 365, and 355. j

is quite small; for this environment it is typically between 2 and 40. The number of

ACFs per C-surfacc depends on the degree of the vertices. For trihedral vertices,

for example, a < 4 (type (c) C-surfaces have 4 ACFs). Hence this tends to balance

out any possible gains, since k is not much bigger than a.
• Kq

Once more we should remember that the g9 update algorithm is designed to

solve the more general problem of applicability decolikposition of SO(3), while the-r

naive algorithm has been specialized to solve the "rotate to a C-surface" problem.
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We speculate that similar specialized algorithms may be developed as fast solutions

to specific spatial planning problems. However, decomposition tools arc a more

general solution which can be applied to a whole class of spatial planning problems.

5.7.2. Related Work, Searching and Lazy Evaluation

The implemented planning system is described in chapter 2. The control

structure of the algorithm is a search. The search employs certain local operators

for moving between configurations. One such local operator is precisely the "rotate

to a C-surface (or the goal)" algorithm.

As for most heuristic2 search algorithms, an adversary can probably devise a

find-path problem which must require an exponential amount of time to solve. This

does not imply that a polynomial-time algorithm using the mathematics presented

in this thesis could not be devised; indeed, the theoretical work of Schwartz

and Sharir (1982a) suggests this possibility. However, in practice, the planner has

performed quite well. We offer the following explanation for why tihe planner should,
in average cases, perform better than in the adver'sary situation.

In the theoretical work of Schwartz and Sharir (1982a) and Schwartz and

Sharir (1981), the concept of non-critical regions is introduced. A non-critical

region, intuitively speaking, is a region in (free) configuration space where the

constraints are invariant. We employ similar constructs via sets of non-redundant

constrainrt-, and by means of applicability sets. In Schwartz and Sharir (1981), for

example, free space is decomposed into critical and nr10 critic regrions, and the

connectivity of these regions computed. The connectivity graph is then searched

for a path. However, computing these regions is (gcomcr.rically and algebraically)

quite difficult. The regions are at least as complex as the C-Space obstacle and

applicability regio~xs.

Instead of precoutputing the applicability regions (or knowing them a priors),

our planner computes them as it explores configuration space. While in the worst

case the entire applicability decomposition must be calculated, this case does not

2We usc Owe terin liuristic iii rerercuice Lto I the 61v coriplexity, aLld 11ot tic Cornpletvciies of the

algorithm.

.1

S. . . . . . . . . . . . .-,j.., ": -. m ,, \ .. • , ,,. • , , • ,• .,•• .'• '• ' .-•. , _'c •'• 'k . ,.'. ,' : ÷ .,• • 2 ÷ "x" # ' ,.""1,1W , %•



arise in practice. We effectively adopt a policy of lazyj evaluation of applicability it,

devising the planning algorithm.
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6
The C-Voronoi Diagram and its Relationship

to intersection Manifolds

6.1. Introduction

IFo'r a finite set of points P in the plane, the Vr-onoi diagram is the set or all

points in the plane which are equidistant from two or more points in P. The Voronoi

diagram for P is a network of straight line segments. Drysdale (t983) introduced

the goccralized Voronoi Diagram (or GVD) for the plane: for a set of polygons in tile

plane, the CVD is defined to be all points in the plane which lie (perpendicularly)

cquidistant between two or more polygons. The GVI) is .a network oF straight line

segments and pa-rbolic sections. If the polygons are considered as obstacles, the

GVD represents the network of pathi through free-space which maximize clearance

from the obstacles. Brooks (1983a) and 0'timnlaing and Yap (1982), O'Ddnlaing,

Sharir and Yap (1N82) have developed definitions and algorithms cemploying an

extension of the Voronoi diagram for low-dimensional configuration spaces. Nguyen

(1983) also discusses thL relationship of global methods to the GVI).

More formally, the generalized Voronoi diagram (and its extensions) decompose

the free space into a set of regions, { R• }, such that all points X C- Ri are clcser to

one obstacle than to any other. Thus points on the GVD are equidistant from two

or more obstacles.
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Figire 6.1. A picture or the gcneralized Voronoi Diagram for a bounded 21) workspace containing
four polygonal obstacles. Reprinted with permision from Nguyen (1983).

In this chaptei, we extejd the concept of the generalized Voronoi diagram to the

six dimensional C-Space R' X SO(3), to provide a formal, constructive definition

of the C- Voronoi Diagram, or CVD. The CVD is an attractive construction, in that

it contains a representative component for each "branch" of free space. Each such

component is submanifold of dimension 0 < d < 5, called a Voronoi manifold. We

will derive the following connection between intersection manifolds and the CVD:

Let p be a path along the CVD. p lies along a connected chain of Voronoi

manifolds, 1 , -. .•, Vk. We demonstrate that for each Voronoi manifold Vi, there

exists an equivalent intersection manifold of level C-surfaces, .i. Furthermore,

we also show that for every connected chain of Voronoi manifolds, there is an r

equivalent connected chain of intersection manifolds (of level C-surfaces). (The

equivalence we demonstrate is actually stronger that homotepic equivalence).

This yields an immediate (theoretical) completeness result for planning along L
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intersection manifolds. While our proof is constructive, it cannot be considered an

effective procedure. The charts for the Voronoi manifolds are indoubtedly very

difficult to derive. This in turn makes it hard to develop planning algorithhms along

the C-Voronoi diaigram. In C-Spare, the most attractive feature of the CVD is not

that it maximizes clearance from obstacles, but that it represents the connectivity

of free space. lit other words, given the CVD, the Movers' problem can be solved

by connecting the start and goal configurations to the same connected component

of the CVD. But since the Movers' problem has already been reduced to the task of

navigating a point, it is clear that, mod'lo some uncertainty bound, %c do not !,eed

to maximize clearances while in planning paths in C-Space. We deinonstrat'. that

instead, it is possible, in principle, to devise a planning algorithm along intersection

manifolds--for which we have derived charts (chapter 4)-which is equivalent to a

planner along the CVD.

Generalized Voronoi Manifolds

In this section we define the C-Voronoi Diagram (CVD) for the configuration

space DZ3 X SO(3). Note that for Euclidean configuration spaces we would employ

the standard techniques (Drysdale (1983)). The metric in R3 X SO(3) is non-obvious,

and the CVI) does not reduce to the CVD, when rotations are factored out. However,

it has the saire connectivity as the GVD. The CVD for configuration spaces without

a Euclidean distance nctric is fundamentally different, and is defined as follows.

To define the CVD, we rely on the collection of pseudo-metrics provided by.'""•

the geometric interpretation of C-function values (chapter 3). Intuitively, within

some well-defined region in free-space where a C-function is non-redundant, its __-_
value characterizes the tranblational distance to either (1) an obstac!e face, or (2) v'r

the plane of the obstacle face. Formally:

In this chapter, we will use 7 C R' X S0(3) to denote free space. See chapter .4,

2 for a formal review or charts and atlases. As noted in more detail in chapter 2, in

this thesis we usually specify charts via the inverse form h: E" - M (where E' is

an open subset of T") with the understLandi•ng that it is the inverse (or set of local

inverses) h-- which provides the family of charts { (h-', Wi) }, for Ui Wi h(E").
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De~fluitioir (1): Let NM be thc set, of famnilics of C-functions on W X SQ(3). For

X (j 7, let Ax be thre set of inaxiniurn, applicable, non-rcdundant C-functions

within families, that is, if M (E N is a family of %C-functions, and AV C Al is

the subset of applicable and non-redundant C-functions at X, then Ml contributes

to Ax the function f C M' such that f (X) > ht(X) for all It E l - {f }. If k

functions in M' tic for maximum, thecn M contributes all k to Ax.

Let n bc the diniension of C-Space. Now, X E CVD if there exists a maximal

subset B of Ax, containing at least two and no miore than n C-fuinctionls, Such that

all functions in 1) have the same value bo at X andl all Functions in Ax - 1B have a

value greater than bo. We say that X C CVD lies on ain (n - 1131 + 1)-diniensional

Voronoi Manifold. Trie C-Voronoi Diagram for C- Space is the union of these

Voronoi Manifolds.

We have seen that a level C-mianifold is anatlogous to a level surface in W, in

that it is the set of configurations ( X I f (X) =: } for sonic applicable C-function

f.Clearly, points on a k-diniensional Voronoi manifold T lie on the intersection ofI

,n - k I4 equ~i level C-nianifolds, r.c.,

f 1 (X) =. f.-~k+I(X) A ~X)

where the level t(K) is allowed to vary as X moves along V. Furtherrmore, we insist

that the C-funictions fi constructing time Voronoi manifold immust belong to pairwise

disti :nct fami~lies.

When we say that at Voronoi manifold Ti is constructed fromn a set of constraints

F',, we mecan thatall the C-Functions f C- Fi have equal value along Ti. An initersection

manifold constructed fronim Fi is the intecrsection of level C-surfaces for constraint.s

in Fi. By this we niean thiat first a level is chosen for each f C- Fi, and then

thc resuilting level C-surfaces are intersected. Iii general, a level C-stirface for a

C-function f at level f has the form

N'

f-'(fA

%. ..
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Figure 6.2. Strongly equivalent interscction Tuaniifolds, and the bridge mrtnifolds connecting them.
Each V, iR strongly cquivalciit to Ij. Each bridge manifold Bj.i~j is cquivatCnkt (but not strungly
equivalent) to Vs.

f-'(t) is the trivial intersection manifold, that is, the manifold constructed by

intersecting one level C-surface with itself. The intersection of two level C-surfaces

Ti= f-(t1 ) •l-'(12).

The intersection manifold 1T is constructed from the same C-functions at different

levels:

t fd

An Overview of the Proofs
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Let p bc a path along the CVD. p lies on a connected chain of Voronioi

manifolds. Call this chain T1 ,...., Vk. For a Voronoi mantifold V, we say that an

intersection manifold 1i is eqiivahnt to V" if (1) the set of C.finctio,,s which

const ruciV is a (possibly anon-strict) superset or the C-f,,ctions F' which define

"i, (2) LJ is holnotopically equivalent to TVi, (3) 2i lies in free space, and (4) all

C-functions in P' satisfy definition (1) along ii. If l"/= I,'!, i.e., 1i is constructed

with exactly the same C-functions, then -I is stron(.ly eqpivldent to Va.

Notc that by definition, each 1i is restricted to where the conditions of definition

(1) hold, i.e., to sonme region [?(Ji) C r7 where all C-functions in "' constructing

"Vi are maximum, applicable, non-redundant C-functions within families. Now, in

general, 1i is an unbounded level set which cannot lie in free space everywhere.

"Thus by convention, we also restrict Ij to the region of interest NR(l"¶) where

all C-functions in I",' satisfy definition (1). That is, NI?(,f!) { XI F! C- A }.

Instead of writing I: fl NI?(I) everywhere, this convention is assumed throughout.

In is an interesting, question whether, for every Voronoi chain Vt, ... •, V k, there

exists a connneccted, finite, corresponding equivalent or strongly equivalenL chain of

intersection manifolds I1, . .. , 1k., (where k is not necessarily equal to kV). Theorem

(I) shows that fur all Voronoi manifolds Ti, there exists a strongly equivalent

intersection manifold h. These 1i might not form a connected chain. 'l'Theorems X,

(II) and (111) show that each disconnected pair of intersection manifolds 1i and

li-t| can he connected by an infinite sequence of "bridges." Each bridge is an,

intersection manifold eouivalent (but not strongly equivalent) to V1. We then argue

that since there exists an infinite bridge sequence, therefore thlere must also exist

a linite bridge sequence. F"inally, (theorem IV) we show that there exists aln entire

intersection chain

SU ... ,

Iv
which is hrontotopically equ~iv~alent to th etire Voronoi chain

V U... U Vk""
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Theoi-em I: Let Vk be an m-dimensional Voronoi manifold, constructed from a

vet of applicable, non-redundant constraints A, which satisfy definition (I) along

'Vt. Then if there exists an intersection manifold Ik of level C-surfaces for the

constraints A, and if the constraints A satisfy dcfinition (I) along 1k, then 14k and

AI are hoinotopically equivalent.

Proof: We will show that two intersection manifolds constructed from the same

C-functions at different levels are hoinotopically equivalent. Next, we demonstrate

that the Voronoi manifold is essentially a special case of intersection manifold.

Let IA be an m-dimensional Vcronoi manifold,

Vk -- x I h (x) f, . M f bx)} (n--6 - m -- 1)

where the fi are chosen from A as defined above (see definition (1)). Note that

the value of the fi may vary with X E Vk. Let 2I be a (rn -- 1)-dimensional (or

U _ _ ... ;.. .. CS ,-. , ,l (.•,rfnwiq t-on ,stri ted from

the same functions A:

The region of .nt.erest for Vk and lk is of course restricted to NJ?({ fi }), where the

functions { } ) satisfy definition (1). 'k differs from Vk in that on Vk the values

K (levels) of the functions fi are equal, whereas on IL, they are not. Furthermore, on

Vk the value varies, whereas on 7k the values arc fixed.

A may be expressed as

h= fl f-(--
f(t o

The claim is that 'K is homotopically equivalent to -k, that is, that if o : -- "

is a chart for Ik and g' : 1'3k - Y7 is a chart for TA., then there exists a continuous

homotopy defurmation hI Ek X 11 - 7 between g and g' such that N
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h(Y, 0) = g(Y)

h(Y, 1) g= '(Y).

As usual, I1 denotes the unit interval [0, 1]. For a review of e'lementary

homotopy theory consult appendix It.

The charts g and O' exist, since Ik and Vk are manifolds. (Assume without loss

of generality that only one chart is required). A level C-manifold fi-'(f) (for some

level 1) is a 5-dimensional manifold and hence there exists a chart J•: E5 -+ 7 for

fi'(I). We demonstrate such charts in the proof of claim (1.1), below.

Let t& be any achievable value for the functions fi along the Voronoi manifold

Vk, that is, any Iy such that there exists some X E Vk satisfying definition (M) .r

which

M(X) ==N(X)=v c*-

NOW; iii - i - V is 1 a ilitear cr 'ir,;r9lI• ioui i I,l;j4 o e V I. CN t dtI - iv P . e Jd! .

level C-surface

f-:l,+ (1 - ty_ )

is a manifold, each has a chart of the form Ci, above. If t E [0, 1], these are

C-surfaces for fi with level I C [t-v, ti], and their charts may be paranieterized,

by t. Suppose we have a set of several level C-surfaces (as in Ik). Their charts

may be intersected to form a new chart for the intersection manifold, We define

S:EK X I -+ 7 to be the chart for the intersection manifold at i, such t.hat

h(E k't n g flfl(tte+ (I - v).

We call It a chart fUamity for the intersection manifold.

Claim (1. 1): The chart family 4 caa be constructed such that h(Y, t) is continuous

in Y and t, within the area of inte-est for 'Vk and Ik. (For proof, see below).

"Sce the proor of (',i,,, (1.1), whelre h(, js iudi a chart.
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Recall that If is the value (or level) of fi on the intersection manifold .1k. Then

h :Ek EX PI --+ 7 is a homotopy between g and g', that is, h continuously deforms

Ik into VL.(!Iv), where we use Vk(el,) C Vk to denote the Voronoi manifold restricted

to level fV, i.e.,

Vk(fv)= {X II(X)=--. = fC(X) =`- hv } Jr:.

Verify that

h(Ek' 1)=-' f (tol~

and that

,• ,0) --.. _~~V

We have shown that k C--h 'Vk(eV) (-h denotes homotopic equivalence) for all

achievable f. We must now show that 'Vk(IV) -4 V•,(v + ).

We are interested in continuous deformation within 7. Hence Vk may be

multiply connected within 7, so long as it does not wrap around obstacles. Vk must

be contractible to a point (within 7). This is guaranteed by the construction of A

(definition (1)) and '2 k, i.e., by the choice and domains of the functions fi. To see

this, consider that if 'Vk did wrap around an obstacle in C-Space, then the value of

some fi would have to go negative. Ilence, it would become redundant, and could

not be used in the construction of Vk. Note that the C-Voronoi diagram, which is

the •irion of Voronoi manifolds such as 'Vk, will, in general, wrap around obstacles -_

and be ,iultiply connected.

Furthermore, we can choose c such that the topology of 'Vk does not change

too drastically between Vk(tv) and Vk(I-v ± c). (This is possible since Vk is

finite-branching). So
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1 k •--, Vk(1) -h Th V + f) -h •, k(AV + E2) _. .. h hk(WV + )

What we have shown is that Ik is homotopically equivalent to the "easy" parts

of Vk (where the level of the Voronoi manifold is constant). We next showed that

because the topology of Vk is simple, we can paste together these restricted Voronoi

manifolds. *

Proof of Claim L.I: The existence of a continuous chart family for the intersection

manifold is based on our knowledge that the manifolds exist at certain levels, and

from our ability to demonstrate such a chart for the intersection manifold. In

chapter 4, we exhibited C-functions of six variables for the C-Space 3 X So(3):

which are continuous, affinc in x, y, and z, and inultilinear in the sines and cosines

of tae angles 0, 0, and %6. The Linear Form for a C-function fi : X SO(3) R •,

is an equivalent expression

fxy, z, E)) EI1(e)x +i E2(E))y + E73(G))z + E4(0),(61

where E': SO(3) R (for j 1= 1, 2, 3, 4). Now,

f i- (t) = ker(f (Z' V; Z, 0L, 0, 0) -. )

A chart for f)(A) may be found by solving

S(•,,, Y I ,o,¢0;U) - t Z 0

for x (or i', or z) in terms of the other variables aud t:
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E 2~y +E 3 z+E 4 -I

(We have dropped the 0, since the functions Ej are constant with respect to z, y,

z, and t). If El - 0, then the solution for y or z may be employed. This yields the

obvious chart

C :E -W X SO(3)
E 2 y + E 3 z + E 4 - t

which we presented in chapter 4. C is affinc in e, and can be used to construct a

family of charts

:h(y, 1) W3 X SO(3)I

for the C -urfaCCs

which is continuous in Y z (y, z, b, 0, 0) and t. he is clearly a hornotopy between

level C-manifolds for fi.

Chapter 4 also driy-.e S car 4or tii 'i-o 1 ) 'i [-i"

_ ~~~~~Ji k-ti' lij V-iJ h iCiJ Il tii lf(~
(and so on) by solving the C-functions simultaneously for the intersection manifold.

For example, a chart for the intersection manifold of degree three

n fi- (v4)
s=1,2,3

can be constructed by solving three sirnultancous equations with the form of (6.1). N

For arbitrary coeflicients Ej and levels 4i, this intersection may not always exist.

However, we know a priori that it exists for the specified levels 1i and £•. From

the form of (6.1), it is clear that if the intersection manifold exists for some levels
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4j (and if the cocfficicnt. functions Eli arc independent), then it will exist for all

lcvels. Wc omits a discussioni of intersection inairifolds of higher degree: thle reader

is refereed to chapter 4 for further details. I

Corollary: For every Voronoi mainif old Vi, there exists a strongly equivalent

intersection manifold Ii.

Corollary: If Fi is the set of' constraints used to construct Vj, let NI?(.F") denote

the region in free-space where all of the constraints in PF, satisfy definition (1). if

Vi exists, then in every connected component of N(I),there exists a strongly

equivalcrnt intersection manifold 2i built out of Fi.

Proof of corollaries: All f E Fj exist within IVR(E-). Pick any X E NII(Fi).

Evaluate all the functions in Fi' at. X to obtain a set of levels. Thle intersection

manifold mnust exist at these levels, since we have demonstrated that X is on tile

intersection manifold. The intersection manifold from thle C-surfaces at these levels
is by "Aria"i*t, and by theorem ( MI) strngl qivalntnf to T. a

Next, observe that for all I K i < k, either 'V1 C 'Vi+ or 'Vi 1 C Vi. In other

words, to move from Vi to Vi+ 1 , we either add or remove one or more constraint~s:

V,={XI fl'X) =. =fkiI

I =X IfM(X) =. I& }

and either ki > k[i-1 or ki < k±ij. We call ki and ki[m the degree of the Voronoi

manifolds.

We have shown that for a Voronoi chain V1,., Vi., a sequence of intersection

manifolds 11,. .,Ik may be constructed such that each Ii is strongly equivalent

to Vi (for I < S' < k). However, the sequence of intersection manifolds may

be disconnected. We now furnish a theorem demonstrating that the intersection -

manifolds iiiay be constructed in suich a. manner that they c~an be conlnectedl together

by a series of special intersection manifolds, called bridges.

Theorem 11: The intersection manifolds 11, 12,..., Ik may be constructed such

that each pair of intersection manifolds 1i and 1,+. can be connected by a sequence
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of "bridges." Each bridge is an intersection manifold equivalent (but not strongly

equivalent) to Vi.

Proof: Let T1 Ie a strongly equivalent intersection manifold to V1 , constructed

with C-functions Fl. Along I1, all constraints in F1 are non-redundant. Let T2

be the next Voronoi manifold a[, er V1 in the Voronoi chain, and let F, be the

constraints constructing V2 .

Case (iýi If F2 C F1 , then V1 is lower in dimension that V2 . We can construct

12, a strongly equivalent intersection manifold co V2 , which is counected with 11,

be removing one or more constraints in Fl. (We remove exactly the constraints

F, -- F). This is possible because if F 2 C Ft, then Nfl(F 1 ) C NR(F,):

n411 f f;'-(c,)

fEFt

12 fl fj (c,) (6.2)

Strictly speaking, equation (6.2) should employ the subset notation (C) instead of

equality (=), since 11 and 12 are restricted to where the intersection is applicable and

non-redundant. However, the equality makes the construction more transparent.

Note that the construction still works with the subset notation, since NR(F1 ) is a

subset of ATR(F 2). Since F2 C F1 , I1 and 12 agree on the levels for C-functions in

F2 . Since 11 C 12, 11 and 12 are connected.

Case (ii-a): Suppose, however, that F1 C F2 . Then V2 is lower in dimension

than Vi, and NR(F.) C NR(FO).

We know that h1 C NR(Fi). If z nNR(F2) • 0, then we can construct 12

from F2 such that 12 C NR(F2), 12 C Ji, and in addition, I1 and 12 agree on the

levels in Fl. Construct 12 as follows: pick a point X 0 C fl NJ?(F2 ). Evaluate each

'j C F2 -- F1 at Xo, to obtain a level cj -- f,(Xo). Construct:

12.,- n( n f;-:;)
I, E. F2 F
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Figured 6.3. Cane where jn f NR(Ft) 7 0.

We showed earlier that 12 may be constructed in this manner.

Case (ii-b): The hard case is when I, n NR(F2) =-- 0. In this case, we must

construct some strongly equivalent (to V2) intersection manifold 2"2 C NR(F2) with

different levels from I1 with respect to the C-functions F1 . We then buJiLd a scquence

of bridge manifolds, entirely within NR(F1 ), between 11 and 12, connecting them

together.

The bridge intersection manifolds are constructed out of some subset FLI C F1 ,

and each bridge manifold is equivalent (but not strongly equivalent) to V1 . The

bridge manifolds are formed by relaxing one or more constraints in F 1 to be able

to move from NIR(FI) - NRJ(F 2) into NR(F2). The motions slide along intersection

man'folds constructed from the remaining constraints. Once inside NR(F2), we

construct 12 there, and 12 is strongly equivalent to V2 . Note thc levels at which 12

is constructed, (with respect to the constraints in F1 ), are typically different from
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Figure 6.4. Case where i, n NR(F2 ) 0.

the levels at which Il is constructed. The existence of bridge manifolds is covered

in theorem IlI. M

WQ will use the dot notation for the Riemannian inner product on the tangent

space at X. The normal to a level C-surface f-'(1) is Vf, and depends on the

inner product. We assume throughout that the normals are unit vectors. A basic

concept in these proofs is that of general position, or transversality (see Hirsch,

1976). Two submanifolds M, N of a manifold V are in general position if at every

point of MflN the tangent spaces of M and N span that of V. If A and B are

not in general position, then arbilrarily small perturbations of one of them will put

them in general position. In our case, M and N correspond to level C-surfaces and

their intersection manifolds, and V to DZ3 X 50(3). The proofs still work even if

M and N are in general position only at "many" points of MflN. We will write

the condition of general position for two level C-surfaces *f-l(4) and g-1(t2) as

Vf.Vg 3 1.
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Thcorrn Ill The Existencc of Bridge Manifolds: (Bridges of dimension five).

Let S be a path-connccted component of NR(F,,), Xo, Xi E S, and f, 9 E /". Note

that S lies with in the domain of f and g, and that by construction, i(S) is an

open set. Then if Vf Vg $ I within S, then there exists an infinite sequence of

five dimensional bridge manifolds within S, connecting Xo) and X1.

Proof: Each bridge manifold will be of the fofm f-'(cf) or g-'(c,), for different

levels of e$ and c0 . Note that as we vary c1 , f-l(el) covers S (similarly for g).

Let TX denote the six dimensional tangent space at X. If co = f(X), the level

C-surface f-'(co) is a five dimensional submanifold of 93 X SO(3), with a five

dimensional tangent space, Tf. That is, identifying Tf/ with a subspace of Tx,

I, -- {vE T IV Vf(X) 0).

It is easy to show that Tf UTX spans Tv, for all X where Vf(X) Vg(X) $ 1.

t T •_ N"f d fenot.p the normal space at X with respect to f, such that

Nfx {vETy Iv -- c-Vf(X)},

for all scalars a E R. So Tx - N 1 () Tf. Clearly, if Vf(X). Vq(X) $ 1, then
Nfis spanned by Tf~ U T' . Hence 7Tx =--= T + T7.

Since the space of differentially tangent directions to the two level C-surfaces

at X is equal to the space of all directions, there exists an infinite sequcace 'of

differential moves along level C-surfaces foi j and g, at different levels, to realize

any path within S. Since S is connected, there exists such a path from X 0 to Xt.

Corollary 11I.: (Bridges of diriension four). A direct result is the existence

of a sequence of bridges which are four dimensional intersection manifolds. Let fj,

f 2, f3, f4 E Fi. Suppose that, within S, Vfi(X). Vfj(X) $ 1 (for 'i ý= j). Then

there exists ar infinite sequence of bridges betweea X 0 and X 1 , where each bridge

is of the form
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Figtire 6.-5. A finite path itecrating alozig levels of f anrd levels of g.

rDij)= f1j 1 (ci)fnff'(ci).(i7

This is reasonable, since each 1.9(i,j) is a four dimensional manifold. If the

normals are all indepe~Adent at X, t~hen th~e directl sumn of the tangent spaces to all

possible intersection manifo~ds IBu(i~j) is clearly TX:

(Of course, i 74 j for all terms in this sum). *

Corollary HIL.2: (Existence of a finite sequence of bridges). Wc now argue that if

there exists an infinite scq AecflC of bridges from X0 to X, within S, then there also

exists a finite sequence.
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Informally, we argue that it is always possible to to move a certain distance C

along each level C-surface, and that this c cannot grow arbitrarily small. First of

al, note that S is not infinitesimal, and that i(S) is an open set. (If it were not,

it might be necessary to make an infinite number of differential motions to remain

within S).

We also appeal to the well-behaved structure of the level C-surfaces, and their

intersection manifolds. Thc level C-surfaces are smooth, with normals that change

continuously. (If the normals changed discontinuously, we might not be able to

take finite steps). Thus we can move a finite (i.e., not infilnitessimal) distance along)-

the surfaces to a point where the normals are still independent, and where the

surfaces are "similar" (i.e., having normals in almost the same direction as before).

Furthermore, for any two levels of f within S, there exists a homotopy between

them. These continuity arguments indicate that it should be pos:;ble to move in

finite steps along the intersection manifolds, and hence we can rcich X1 from Xo

in a finite number of bridges.

Suppose from X0 to X 1 there exists an infinite sequence of bridge manifolds,

but no finite sequence. Then either (t) i(S) is not an open set (and therefore

only differential motions can stay within it), or (2) for a subset P C S, whose

cardinality is that of the continuum, the entire tangent space is not available along

the level C-surfaces. In both cases, our initial hypotheses are violated. (1) violates

the as.sumption i(S) is an open set, and (2) the assumption of general position.

We formalize this argument as follows:

Definition: Let UI be a metric space, and p, p' : It 11 be paths in Ul. Let { U }
be an open cover of p(11) in UI, where each U,, is a neighborhood of radius < r,

and U. n p(I) =, o. We oay that p' approzimatcs p at resolution r if { U1, } is an

open cover for p"(l) also; that is, if p'(I) C U, U,.

Claim (111.2.1) shows that an arbitrary curve in some neighborhood U of

free-space can be approximated by a path within U along a finite sequence of

intersection manifolds. The proof of Cor. (111.2) then employs the fact that the curve

is compact, and therefore can be covered by a finite number of such neighborhoods.
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Figure 6.6. Let co f(Xo) and el = f(X,). X 0 lies on f-'(eo)g-l'(c), and X, lies on
f'(cj) I q-'C(c). The path segment between Xo and X, may be approximated by a path sliding
first dlong g-'(co) from X0 to X', and the, from X' to X, along f- 1(ei).

Claim 111.2.1: Any path within a neighborhood where f and g are defined, may

be approximated to an arbitrary resolution by a finite sequence of motions along

level C-surfaces of f and g.

Proof: We will regard level C-surfaces of f and g as trivial intersection manifolds.

Consider how one can approximate a path from X 0 to X 1 by a path along

intersection manifolds. Let d be a metric on WR3 X SO(3), and f, g be C-functions

with inverse images covering a neighborhood containing X0 and X1. Let co = f(XO)

and cl = f(X').*Xo lies on the intersection manifold f1-(eo)ng- (co), and XI lies

on f-,(co)lq n-((c). Construct f -(c 1 ) ng-(col (refer to fig. 6.6), and choose X'

to be the any of the closest points to Xo on this manifold. We can construct a path

which slides from X0 to X' along g- (c0), and then slides from X' to X , along

f-(cj). We wish to demonstrate that by choosing X, sufficiently close to X 0, X"

can be made to lie arbitrarily close to Xo; that is, for all c > 0, there exists a

and co' g(Xo), Cl' g(Xl).
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6 > 0 so that d(Xo, X') < c whenever d(X 0 , X1 ) < 6. This is definitional, since

lirnx-.x0 f -(c1) = f-(co).

Thus for every neighborhood Br(Xo) of radius r about X0 , there exists an X1 E

B,(Xo) such that X' E B,(Xo) also. Furthermore, d(Xo, X') is finite (and non. zero).

Of course, a similar argument holds for the path segment between X1 and X'. Thus

any path within a neighborhood where f and g are defined, may be approximated to

an arbitrary resolution by a finite sequence of motions along intersection manifolds.

Clearly, similar arguments hold for intersection manifolds of higher degree.

Proof (Corollary 111.2): (Sketch) Let p('11) be a path within i(S) from X 0 to X,

along an infinite sequence of intersection manifolds. In short, p(11 ) C i(S). Choose

an open cover { U, }, relative to R3 X SO(3), for p(I1 ) such Chat U. U, C i(S).

p(it) is compact, hence there exists a finite subcover, i.e., for finitely many indices

al,. -an, we have

p(I') C UVQ U...U ,. C i(S).

Now, for each U,,, we can construct a path p'(11 ) along a finite sequence of

intersection manifolds approximating p(J 1 ) fl Ua, (Claim 111.2.1). That is, p'(11) is

also contained within the closure of I,,. Furthermore, it is not hard to construct

p' such that it leaves the neighborhood Ua, at the same points as p, that is, so
at . . r r ttI • •f ', 1 T r "C' ) .ki " tle 12.lL! . . lwi"u pvL j u , pt yi j' ii uu,. o,,,ce i,,,• is true~ fr ~al n" , teitr p* j cnaj be • _

approximated by some path contained within Ut,, U 'U U,, and which lies on

some finite chain of intersection manifolds. -

Theorem (IV) is almost, immediate, and its proof similar to that of Theorem

(i).

Theorem IV: For every connected chain of Voronoi manifolds Cv - 1 ,... ).,
there exists an equivalent (in the sense of theorems (I-III)) connected chain of

intersection manifolds Cj = .1- .... , 1k, such that the entire Voronoi chain C1, is

homotopically equivalent to the intersection chain C1 . That is,
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U UV U .
VEC • .jEC:

Proof: Simply apply the fact that each equivalent pair (V, 1) (where V is a

Voronoi m'inifold and I is an equivalent intersection manifold) must lie in the same

non-redundancy region. Hence if one chain wraps around an obstacle, so must the

other; furthermore, each chain must wrap around the same obstacles. I

Future Research

There are several interesting problems which are left open. They include the

following:

(i) We have demonstrated an equivalent chain of intersection manifolds for any
connected chain of Voronoi manifolds. Show whether or not a strongly equivalent
chain exists also.

(ii) Show whether or not for every Voronoi chain CV there exists a (strongly)
equivalent intersection chain exhibiting a bijective correspondence to CV.

Nii - --ib ac c=.i..iv ra ~ cosrcn anc aino in-tersect n~ rnf'olq

to realize any class of paths in free space.

(iv) Derive complexity bounds on the construction of the C-Voronoi diagram and
the equivalent intersection chains.

(v) Other configuration spaces, such as those arising in the hinged body problem,
should be considered.

(vi) To extend these results to configuration spaces generated by real space
constraints which are not polyhedral (for example, algebraic surfaces), a
generalizat~ion of the GVD such as smoothed local syummctries (13ady, 1982b)
could be considered.
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7
Conclusion

In chapters 1 through 6, we developed representations ajid algorithms for

automated spatial planning with six degrees of freedom. To demonim'rate the

competence of the representation and the feasibility of the algorithms, a planning

system for the classical find-path problem with six degrees of freedom was

implemented. The planner is of considerable intrinsic interest, in that it, is compl.te

(for a given resolution). Experiments have demonstrated that this algotithin can

solve find-path problems requiring six degree of freedom solutions that were beyond

the competence of earlier, approximate planners. The mathematical framework

%A C 'V ^, ,pd hcr-, i'nipacs a clas.. of gc,,-,,,t.ri. nlaininr prohlemis for three dimnensional

objects.

ThQ planning algorithm may be explained by analogy with the Point Navigation

Operators. The C-Space transformation reduced the motion planning problem to

the task of navigating a point in 90 .X SO(3). Since the path for the point must

a-void the C-Space obstacles, which are curved, six dimensional manifolds with

boundary, clearly patlhs can be round in C-Space by the closure of three operators:

(i) slides along 1- to 4-dimensional intersections of level C-surfaces;

(ii) slides along 5-dimens.ional level C-surfaces;

(iii) jumps between 6-dimensional obstacles.
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However, these simple operators could not be implemented until a series

of representational and algorithmic questions were solved. The fundamental

representational is:s.iues centered on the structural properties of the defining C-kI
functions. By deriving their domains, and by proving theorems about the topology

of these domains, it was then possible to address the intersection problem for

high-dimensional configuration spaces. By solving these open problems, developing

representations for the C-functions and their domains, and designing decomposition

algorithms in C-Space, it became possible to represent the constraints on motion

"completely," and to exploit the complete representation in implementing a planning

algorithm. Next, we presented new theoretical results on the C-Voronoi diagram.

By showing that for every conneetctd chain of Voronoi manifolds, there exists

an equivalent chain of intersection manifolds of level C-surfaces, a theoretical

completeness result for planning along the intersection manifolds was obtained.

This result is also of interest since while the charts for the Voronoi manifolds are as
yet unknown, charts for the irtersection manifolds are straightforward (given our

representational fraraework). Thus it is possible, in principle, to devise a planning

algorithm with all the advantages of a planner along the CVD.

There is much work to be done. Ultimately, decomposition algorithms such aW

those we present in chapter 5 will become increasingly important in partitioning

C-Space into regions where the set of applicable (or alternatively, relevant)

constraints is invariant (see also Schwartz and Sharir (1981)). The representations

and algorithms we have developed may make other geometric planning probiems-- r

such as fine-motion, and planning with uncertainty--more feasible, and should now

be applied in these applications. The find-path algorithm can be easily extended

to robot manipulators with six degrees of' freedom in which translations can be

decoupled from rotations. This class includes Cartesian manipulators (For example,

the IBM RS/i). The adaptation of this work to a production environment presents

interesting engineering challenges.

In principle, the 6lDOF representations can be exte nu. ,o revolute-joint, linked

arms with six degrees of freedom. Ilowever, the C..Space of the linked-arm problem

is the six dimensional torus,
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S1 X-.- X S, (to 6)

which has a very different structure from R3 X SO(3). It is our hope that this thesis

can present a methodology for formulating the geometric constraints for arbitrary

configuration spaces, and that a similar structure will be found for constraints on

the 6-torus.

Our planning algorithm is complete (at a resolution), in that the representation

employed is complete, and in that the search is guaranteed to find a path if one

exists at that resolution. However, since it is a search algorithm, we cannot provide a

polynomial time bound. Our motivation has been to address the completeness issue

first, by resolving fundamental representational questions; now, one of the most

important remaining tasks is to develop complete, poly uoinial-time algorithms which

can actually be implemented. We do not believe that the worst-case exponential

behavior of the 6DOF planner is inherent in the representation, and conjecture

that a poiynomial- time aigorithm which plans paLhs along intersecLion inanifolds r. A.,.

can be devised. Indeed, the theoretical results on the CVD are suggestive that the

limiting complexity of the approach may be the complexity of constructing the

CVD or an equivalent chain of intersection manifolds. More research is needed on

the topclogy of the CVD. A fast planning system nmight determiine what constraints

construct the CVD, and, using these constraints, construct a chain of intersection

manifolds which could attain the goal. The first step in this effort would bound the

complexity of the CVD and the intersection chains.
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Appendix I

Details of the Intersection Problem, and Related Problemr

This appendix contains the detailed equations from chapter 4, which are

relegated to an appendix because of their excessive length. Some definition of terms

is repeated, so that the interested reader will not have to flip back and forth too -. .

much.

1.1. Intersecting Two C-surface, in R2 X SI

By applying trigonometric reductions we can express type (a) and (b) constraints

as follows (only (al) and (14) are shown):

CostA 0)0Y + C -SF r -N I) -' I

+ sin(Xi - "yj)lIbjllS - Ilal cos(X-- -)-

- C cos(X, -- 7j)llbsl (al)

sin(%k)y + cos(%j)x - Iaill sin(Oj - nj)S

-- c~lal~l cos•(¢k - m77) - Ilbbhl cos(Oj - -yj) (6)

Where 9;
C = cos 0 and S =. sir, 0.

. Now, we can consider a pair of these equations as a system in four variables,

y (,y, C, S), and proceed to solve (at) and (b2), (1)1) and (b2), ad (al) awd (bl) for
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x and y. For example, the intersection of two type (a) surfaces, (at) and (a2) is a

curve

p : r, ILl r,,2 --+ a2 X S 1

where rl flra2 C S1 denotes the intersected applicability constraints for (a1) and

(a2). Although the solutions are in the variables C and S, we can use C =- cosO =

cosr and S = sinO 0 sinr to generate the curve of intersection in T 2 X S1.

After much simplification, the pacametric solutions for the intersection curves

for type (a) and (b) constraints in R2 X S are as follows:

The intersection: of two type (a) Surfaces: (al) f(a2)

pO(r) = ,

p.(r) D(-(S(lla11 cOs(! + X•- ) + Ilall cos(77- - X)

-- Il-il cos(X: +h -- X,) - Ilhaul cos(--: + 77 - Xj)

"+ C(2 cos(.: + Xj - -yý)lbIl - 2 cos(X! + Xj - )ilbjll)) III

" Q(II a1:. I + Xj -!) a .... sin(77! - Xi - X?)

+ C2 (2si.•n(X' + X -- yý) I Iin ... - 2 -i- ' 71+ - -b A I)I)
* (- sin(X' + xj - -y.) - sinCX,' - x,. - "•j.))llbjjI •
* (sin.(..k + X,,- yj)- sin(:X! - Xj + lj))llbjll)/2),l•••

ppM ) (-(S(-ja'lI sin( + Xi - .) - j1ahl sin(7? - X- X!)

-11ali :;in(X' 4- , - Xi) + Ioaii s•.n(--X! + ,n - Xi)

+ C(2 sin(X! + Xj - -1)llb1l - 2 sin(X! + X, - ji)IlbjiI))
+ C(-Ila!ll cos(-q + Xi - X') - IlaIll cos(?" - Xi - X!)

4 jlj'll cos(X, + 77 - Xj) 4- I1•ill cos(-X' + 77i -- X2))

0 ±(2(2 cos(X, + Xj - j)llbjl - 2 cos(X! + Xi - 1•.)llbjII)

4 (cos(X, + X, - - ) , cu(X - -×, 'l'

4- (cos(X> - Xi + -yj) - cos(,' + Xj - -y.))Ilb)l)/2),

D = csc(X! - Xi).
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The Intersct~ion or type (a) and (b) Surfaces: (at)fl(b2)

PO (r)

Mzr) F(S(2CIlaIIl cos(,O - I?!- X1)

+ 11bi11 cos(Oý + X; - -1ý - l~b~iI cos(Oý + X, -. yj)

4~- llb11l cos(Ok - Xi- y4) + lib~iI cos(Oý - Xi + -y,))

+ jja:II sin(Oý - 21 + Xa) - 2C2Ila:II sin(oý - n! - X,)
+ Ilaill sin(-O - n!- X,) - Ila~iI sin(oj + i7h - Xi)

-IjjazIjsiri(,AY'-im+ Xi)
+ C(Ilb~flI si n(Oj'+ Xi -)-ID bjtlsin(Oý+ )q-,yi)

- I1bi11 sin(Oý - Xj- -y) - IlbAIl siir(Oý - X& + -j)

P21(r) -F(S(2CIlaf 1 sin(Oi - q!- Xi)

- l1b11l sin(Oi' +1 Xi - '4ý) + Ijb~iI sin(oý + X'i -yj

+ 11b11j sin('ký -- Xi - -4ý) - llbjll sin(,O - Xi + -y))

+ Il!all cos(,Oj -q!~ + Xj) + 2C2 11afII COS(Oj5 -,q _1 X,)
- Ila!il cos(Oý - -~ X5) - Ilaill cos(Oý + inj - X2)

- H~adI COS(O- 1i + Xi
+ C(I1bil1 cos(Oý + Xi - 14) - llbjII cos(-O + Xj - -yi)

+ 11b11l cos(Oý - Xj- -4ý) - lbjtI co-s(Oj - Xi + -j)

where

F=(2 -cos(O' - Xi)S - 2C sin(Oj - Xi)

Cs5C(O - Oý+ X,)

2
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The Intersection of two type (b) Surfaces: (bI) fl(b2)

PO(r) r

p.(r) E((S(11aj11 cos(Oj' ± j - 17') - I1a!ills~+ h

+ C-1111 ir(~,+ ~ -i) + IcdIsi(Oj + Oj - 7i

- 11a'11 csn(4,j - Oji - t71) + I1ail sin,(O -. *j +ni,))

+ jjb~II sin(Oý - i - i7)+ I1bIt sin(oý -- 'h' +j -t-

py~- 1 E(b(Ia1t sin(O4ý + 'hi -- y) +hashl sin(4ij + 'P, - -i

4- I1ba'hI sini(Oj - Oi- 7) + I1aiII sin(0j - ekj -t yi))/)

Py~~r + E((IjafjI csi(o'h + Ohi - i?ý) - I1ajiI csi(oý + 'hi - ri

+11ai'l osi(o6 - Oj-?7!) + Ia~il csi(oý - Oj + 77i))

+ ChIbja , ±~ 'k(O +O - nf) - 1hibll cos(oý + Ohi - nyi)

+ ail1 I I-s,, -Oj COS 17

E=-

N-i
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1.2. Related Problems in qZ2 X S1

1.2.1. Techniques for Moving Along C-Surriaces i ?2 X S 1

In this section we present techniques for moving along a C-Surface. We could

imagine using these mnethods to move to the nearest "edge" (C-Surface intersection),

for example. A level C-Surface is defined via a function f(x, y, 0) = k for k constant.

f is exactly of form (al) or (bl) (above), and the level surface in TR2 X S' is all

points

L -- {X E W2 X r! I f(X) =k},

where rj C S' is the 0 applicability range for f.

Define a hyperplane in UZ2 X S' as the set

P = × E R X S' I X -11 -h 4 },

where HI = (hi, h2 , h3).

We intersect the level surface L with the hyperplane P to obtain the intersection

curve:

Po(t)

pX(t) G= , (S(cos(X 1)(-h.t - h4) + h2 sin(X, - 7s)llbII)

+ C sin(C,)(-hjt - h 4) - h2 llail cos(Xi - 77)

- Ch2 Cos(X, - "-y)llbll- h2k,

pv(t) - j -.. (S(sili(Xi)(h3t + h 4) + hi sin(Xi - -'i3 Jbill)'

+ c coS(X)(-h 3 t -- h4 ) - hillaill cos(X, - ni)

-Ch c(-os(X, - -y,)Ibill - h~k) (P n,(a1))

where

(h2 sin(Xi) + hW -Cos(X))S + (h, sin(;) - h 2 co.(X))C"

2'24

KAM *- oL. - 1



pO(t) =

p.(t) ==-G 2(sin(Oi)(h:it + h4) + hallaill sin(Oi - t 1)S

+ Ch21iaill cos(Oi - 'u)
+ h21jbili COS%• - 11j)+ h2k),

pY(t) -G-2 (cos(4j)(h 3t + h 4 ) + hi1 alh sin(O --/i)S

+ Ch I aI cos(Oi -,l)

+ h, 1bbII cos(Oi - yi) + htk), (P n(bl))

where

G2 "-- hi sin(4i) - h2 cos(ij)

1.2.2. Characterizing Clearance to a C-Surface

It would be very useful to characterize t,he minimum clearance to a C-surface.

We would like to ajnswer the question:

For a point bv E 52, at what orientation is b, closest to a C-surface, and
what is minimum dirccted clearance vector at that orientation?

Using Lagrange multipliers, we can minimize a function f(z, y, 0) subject to a

constraint g(,, Y1 0) =- 0 by constructing the auxiliary function

H(X, Y, 0,1) f(X, Y, 0) - fg(X, j, 0)

and solving the partial derivatives A,

- = 0 (1) , .

-- == 0 (2)
agy
OI/
-- =0 (3)

0= . (4)

In our case, g will define a C-surface, for example, a type (a) surface:

g(x, y, 0) = si,(O + Xi)y + cos(0 + Xdx -Ilbjl1 cos(0 + Xi - -yj) - 1Iaill cos(Xi - mi)
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and f will be a distance function. Now, the rotational dimensions cannot be treated

uniformly in establishing a rmctric, so we will define distance in Euclidean space.

Minimizing the square of the translational distance suffices for our purposes. Hence,

f (xyo) == -bX) 2 + (y -b,,)2 .

Differentiating II gives us the following equations:

= 2(x-b.)-tcos(O+ Xj) (1)

Y = 2(y - by) - tsin(O + X,) (2)

ao = -I(¢os(O + X•Y) - sin(O + Xj)X + Ilbill sin(O + Xj -- Yj)) (3)

at = (- sin(O + Xj)y -- cos(O + Xj)x + Ibill cos(O + Xi - -yj)
+ Ia•ail cos(gi - X1)) (4)

Solving these equations for x, y, 0, and t is not trivial. However, the following

observations make it easier. First of all, we note that solving

aHI at.. ==0 (5)

is equivalent to solving (4) as long as t -- 0 is not a solution. We next solve (1) and

(2) for tcos(O + X,) and Isin(O + Xj) and substititute this value in to (3) and (5).

(5) then becomes a linear equation in x and y while (3) is quadratic in x and y and

linear in t. Our rewriting of (4) into (5) has thus eliminated t from (5), and we can

solve for z in terms of y:

-2y 2 + (211bin sin('y) + 2by)y - 2x2 + (211bll cos(-Ij) + 2b.)x

+ la '-11 cos(t7i - \j) -- 2brIjbjjI sin(3j') - 2b:JlbIll cos(yj) (3)
(2b, - 211bIll cos(-y.))y + (211b 3 ll sin(-yj)- 2b-)x

- 2b-,lbjll sin(-jj) + 2bjIlbjII cos(-)i) (5)

We need one additional constraint: this is obtained by observing th-td

sin(O + Xj)2 A cos(0 + X) 2 -- 1 (6)

Since the trigonometric terms can be expressed in x, y, and f, we can obtain j2 in

terms of z.r and t,. (3), (5), and (6) then result in a quartic in x with the roots:
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X c I(2byllbili sin(2-yi) + 2b6ibj 11 2cos(2yi)

- ((2b2 + 2b )llb 1 li + 21bjll-') cos(,y-) + 2bllb3-II2

t G2(jlaiIIlbiIl cosOi - X• + -,)

+ IlajIllbj II cos(7t - - -yj) - 2b, llaiI cos(m- -)))

where

2(2býjbjjIi sin(-Ij) + 2bzIjbjjj cos(,'y) - Ibj,12 - b2 - bI)

and
0 2  V-2byllbill sin(yj) - 2b.!jbjI cos((-Ij) + IbjlI2 + b2 + b2

Given x, y is found from (5)

- IIMbI cos(yj) - b.

I can be found from (3) as a linear function of x and y. To determine 0, we calculate

sii(0 + Xi) and cos(O + Xi) from

sin(O + Xl) 2(y - by)

cos(0 + Xi) 2(x - b,)

and use a two argument arctangent function Atan2 : R2 --+ S 1 to determine 0 + Xi.

The 0 value must be checked against the applicability constraints for surface g;

if it falls outside the range, then endpoints will yield the minimum clearance.

Naturally, it is possible that for certain orientations, (b., by, 0) will lie on or inside

the C-surface. These cases may be disamibiguated by the sign of g(b,, by, 0). Finally,

given the closest point (at some oiieatation 0) on the C-Surface, the minimum

clearance is simply the vector

(x, y) - (b., by).
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The Minimum Clearance to a type (b) C-surface

To find the minimum clearance to a type (b) surface and the orienLation at.

which the clearance occurs, we let g be a typc (b) constraint (equation (bh)) and

solve the system of partia! derivatives of H.

Y.- 2(x - b) - t os(q~i) (1)
aH

=2( - by) - tsin(0,) (2)

a- --tIadil sin(O - 4) + 71j) (3)

ao
- --g(X,Y,O) (4)

The solution is considerably easier because the form of the cofisuraint surface is

less complicated. Since aH/8li =- -g, 0 may be found in terms of x and y using af

arecosine. Substituting this value of 0 into (3) yields a quadratic equation in x, V,

and 1, which when solved with (1) and (2) for the following roots:

a;=bAI cos(Oj) cos(4~ - yj)
- by cos(Oj) sin(Ok) - b, cos(okj) 2 - Ilaill cos%() + b:,,

- IjbiI sin(Oj) cos(Oj~ -- -j
- (b: cos(,j) ± Ilail) sin(iOj) + by cos(o,) 2 ,

I 211bjll cos(O, - 'y,) - 2b,, sin(O,) - 2b, cos(qj) - 211t,11.
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Appendix 1I

The Coyinectivity of Configuration Space

11.1. A Review of Elementary HIomotopy Theory

In this appendix we review some elementary homotopy theory, and address

the coflnnctivity of rnnfigtrat.ion space P. ITe Ilcking and Young (1961) for a more

extensive review, and Donald (1983a) for an analysis of the relation between

channels and homotopic equivalence classes. Let IP denote the unit interval. A

parameterized family of mappings from a space X into a space Y is a continuous

function h : X X I -* Y. Consider the mappings f and g from X to Y: we say

that h is -. homotopy between f and g if for each point x in X,

h(x, 0) f (x) and h(x, 1) = g(x).

Intuitively the existence of h implies that f can be continuously deformed into g

without leaving Y.

The hornotopy relation between mappings from X into Y is an equivalence -.

relation on the function space yX. l1cnce the homotopy relation partitions yX

into disjoint equivalence classes, which are called hornotopy classes. We write the

homotopy relation as f -- g. These hoinotopy classes capture our intuitive notion

of classes of paths. The hoinotopy classes of YX cali be shown to be precisely the %

arcwise-connectcd components of yX (Hocking and Young (1961)).
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To take a concrete example, consider configuration space for the two-dimensional

mover's problem to be the product space of the 2-dimensional Euclidean plane W 2

and the one-dimensional sphere S1 Lo obtain W2t X S1, and denote the configuration

obstacles as CO C R2 X S. Now two paths f and V in the same cquivalence class

must belong to a parameterized family of maPFings such that:

h : X X1 P-* 3z X S, -CO..

and h(x, 0)= f(x), h(x, 1)- g(z) as before.

Now, let y be a point in Y. The y neighborhood of cyclic paths in Y, C(Y, y)

is the collection of all continuous mappings f :11 -+ Y such that f(0) f(l) = y,

i.e., the set of all continuous curveb that begin and end at y. If f and g are curves

in C(Y, y), we say that f is homotopic to g modulo y if there exists a homnotopy

h : V IX --+ Y continuously deforming f into g without leaving Y.

Clearly, homotopy niodulo y is an equivalence relation, and decomposes C(Y, y)

into disjoint equivalence classes which are exactly the arcwise-conccted components

of C(Y, y). The set of these equivalrnce classes is termed the first homotopy group,

or fundamental group of Y. We say a path-connected space Y is simply-connected

if the fundamental homotopy group for X is the trivial group of one element

(for some, and hence for all y in Y). See also appendix II, section "Topological

11.2. The Connectivity of Configuration Space

The configurationt space X?2 x S3 (for the two-dimensional mover's problem)

is not simply-connected, since S' is not simply-connected. The function space
(" X ST)" contains several homotopy classes. ( 5 X $I)X may be envisioned a-9

a cylinder on which there arc clearly two classes of paths: those that bound a

2-dimensional region and arc contractable to a point, and those that go around the

cylinder.

The configuration space : X SO(3) is not simply connected, because SO(3)

is not simply connected. To see this consider the following: geometrically, SO(3)
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is hotneomiorphii, to P, the 3-sphiere with antipodal points identified. As is well

known (see Mas-eýy (1967), p. 166) the f'undamecntal group for P" is cyclic of order

2, and hence P" is not simply connected.

General configuration spaccs (other than that for the classical Mover's problem)

are not always simiply-connected. For oexample, the C-Space for a mianipulator with

six revolute joints is the 6-torus, S' X S' X>.. X S' (to 6).

Let 11 be the half-open interval [-7r, 7r). nI can be used to approximate S1,

it' we are willing to tolerate singularities in the representation. It is instructive to

generate a configuration space which is simply-connected. Since this is not possible

for the general product space W" X S' we will instead consider tie product space of

T' and Hl. Thus for the two-dimiensional mover's problem we consider the product

space

For a manipulator with 'vn revolute joints, the C-Space miay he approximated

by 11rn, where

HL'==-H X X ... XHr (torn).

111k:~co~nnlca rot-ation. group SO(3) caro be. approxiimated by a

heinisphiere of the 3-riplire (which is simnply connected), or by H1-. 11" is

hoiticom-orphir to the interior of the rn-cube. This inew product, space C is simply

a restricted configuration space where the piano is niot. allowed to spin around

wil(Ily. The approximation of S0(3) by a hemisphere of S:1, incidentally, is closely

related to the employinciit of unit qtuatcrnions to reptesent rotations. The Space of

unit quat-erniuisis preci.s.ely SAý; the tw,-o (]uatcrnions q and -q conistruct, tile Same

rotation, although they represent antipodlal points on- 5ý3* When all axiZipodal points

q and --q are identified, the projective 3*siphcrc, P" is obtained. P:' is isomorphic

to so(3). I,.i of interest that R'uier angle space, Q:' (see chapter 2) is esisentially

an approxiniation of SO(A) Uy q?:' (mod 27r), wvhich is isomorphic to the 3-torus, I
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when equivalent rotations are identified. If equivalent rotations are not lentified,

then Q1 is isomorphic to W1. While the approximation of SO(3) by 3' yields a

simply-connecLed configuration space, from the point of view of an automated

planner it has the undesirable effect of introducing an infinite number of goals in

the rotational dimensions of configuration space, for every single goal in the space

of Euclidean motions. For this reason the approximation provided by the 3-torus

may be considered preferable.
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Appendix lII

Integrating Local and Global Algorithms for the Find-Path Problem

In Donald (1983a), we have discussed the integration of a global channel

algorithmn with a local (-space algorithm to form a planning system for the -

find-path problem in R2 X S t . How can a three dimensional global, or channel

algorithm be coupled with the planning system in qZ3 X SO(3) described in previous

chapters? More. generally, what are the fundamental issues in integrating local and

global geometric planning algorithms? Ix particular,

(i) Hlow can a global algorithm suggest paths, or equivalence classes of paths to a
local algorithm?

(ii) Hlow can the relevant geometric constraints be identified and expioitcd by V
the local algorithm? Conversely, how can irrelevant geometric constraints be
effectively ignored?

(iii) How can global topological constraints, such as those arising froul analysis
of hornotopy classes and fundamental groups, be propagated onto the (local)
geometric structure examined by the local algorithm?

In general, the design of a global algorithm will depend on the geometric

constraints exploited by the companion local algorithm with which it will be

coupled. Hence when we consider extending tbe channel algorithm Ct" Do.ahld

(1983a) to the three dirmensional" !iAd-path diomain, we must specify wha "'..rge'"

local algorithm to use. A natural cf.3idatc 0, th lochi, aloritintol l firnd-pat.., in

•3X 50(3), whichi vr :th;sci ibe in chiY,'s 1-2.
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Path Suggestion. A problem which must bc solved in any locall/global find-

path integration is how a global path may be suggested to a local algorithm. In

two dlimensions this was accoinpliuilied by segmnentinig the find-path problemn into

a sequence of sub-problcrns. The Suggestor strategy (chapter 2) is designed with

this in mind. The verified points along the suggested pati. becomec planning islands

in configuration space. The job of the local algorithm is then to connect tip the

planning islands and rind a continuous path to the goal.

Choosing Subgoals in Rotation Space. In a three-dimensional rotation sp.cj

the problem of selecting good rotational subgoals becomes more diflicul'. Mu'w~h

of the path-planning lit2rature has been guilty of overlooking this difficulty. Fuch.

subgoals can be used in path-suggestion as we have described above. Even when

the companion local algorithm is complete, a strategy for choosing good rotational

subgoals is desirable, since it would allow the algorithim to converge fcaster.

We have derived experimental strategies which consider alignmento of Vic robot

polyhedra with the f-aces and edges of obstacles. L, very , olyned.iox n Ubunifuudy i.;I

contains alignabic generators (faces a-ad edges) which have an orientation, and

non-alignable generators (vertices) wihhave no oiicntation. Togeini.iatois are

saild to be aligned when they are parallel, and the rotations in which thev are

aligned form connected alignment regions in 80(3). For exam ple, tv.-%o cubcx; ar-ý

aligned when two faces are parallel, or an edge and a face are para~el. The chanl:L.f

construction is useful for identifying the obstacle surfiiwes which bound the proposed

robt.'he ainetr-gioins can be considered for the generator pairs

We c-i ~ly interested in applicable alignments, that is, an alignment of twoN 4

(JC More) generators where the generators can be brought into contact through

sonlic translational moition (this is our definition of' applicability: see chapter

3). Applicability in~a be determrined lby examining the ainplicabtlity constraili .

ft'nctions (ACI~s) introduced in chiapter 3. Furthermore, in chapter 5, we showed

S- - M. - - - ---- - - -MM -M -MA2 A9A JL'AP0On1O.A 1 Y PJ¶'4).4.:



that alignments of edges and faces occurred exactly at the boundary of the

applicability regions for C-functions.

Every C-function is a partial function fi on the configuration space R3 X S 0(3),

whose domain is DO X Ai for A1 C SO(3). The set of alignment rcgions is obtained

by tlie 4umion of the boundaries of these applicability regions

=U a A

i;or every \C!4uincti~or. E~ very point in Raugn,, lies in the kernel of some ACIF

9 8. 0(31) -- * R foic a C-ftuiJion fi. Irt chatpter 4 we shcwed how to derive charts

tor these boiied*&ries and their intersection manifolds..

in most. find-pst~h problems, the alignment regions in R,,aagn, are complete as

bt'bgoals in, rotlation space-i.e., no other Y(trationai sutbgoals need be considered in

ordez to find a %-Nbt;,On pathi (if' one eyist..ý). This makes a certair intuitive sense:

crie, might try afigning a large t~ox -withi a nai row dook-Frarne in order to squeezu

it throu-h.' Howcver, in general there exist pathol,)gical cases in which this is not

true (imaghin a ro'bot which iooked like a polyhedral sea urchin.), and the set of

alignments ;s not conipiete -,. a setj of subgoals. !ýuetheirnore) it is unsatisfying that

Cie alignment aniAlysis exploits strong constraintc int the polyhedral domain of the

cl-assical Movurs' prcblemi, an~d dues3 not appear toi generaliz(. -well to linked-arm

problems.

We bellevo that itl may be possible to overcoru !,he prohluni of "star-sh aped" robots N

by cunsideking additioriad allignmnent regions obtained from faces and edges of' the

collvex hull (if euch objeCts. Stich ar. algoriOtleri ould have to deal simnilarly with

"star-sliped" (Ibsta-cles. Ev;!a tbv.3e addit~onal :dbgrLomnnt.s may prove incomplete;

howevei , they -_Way Ilamt hcuristic- value.

The problem of how za globa) allgorithi n cii nfer --ood rotational subgoals from

the Structure of' real*--.pac(. is one ofl thc fliGt opencsir~ O pfl1 roblefas in spatial

k !anniing. We cunj~ct~urc that an a-isweyr mnay lie in the sthucture of the bounidaries

'We arc noL makiii'i ak ny clil!.3 abou 1ik,,, L hi sin r Aiu! vu:vxuoh till huer...
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Figure 11.1. Pathological example showing a robot A whose alignment regions do not include a
rotation which helpi get through the Light pamsage.

of the applicability regions in SO(3). The algorithms we provide il chapter 5 for

obtaining the applicability set decomposition may prove useful in computing this

structure. Such a planner might slide along the intersections of ACF boundaries

or level ACFs in rotation space,- much as i-ki am...... l .o , the ...i . .-t;,tons

of level C-surfaces in configuration space. The advantage of such an approach lies

in reducing the (infinite) search for rotational subgoals to a finite combinatorial

search along the ACF boundaries.

Topological Constraints. Ideally, the global strategy should enforce the

path-class criterion 3 for each sub-problem: no straight-line approximation for a

subproblem may cross more than one eqtAvalence class of paths. We begin by defining

,what a straight-line approximation means in 9Z3 X SO(3). This requires some way of

forming "linear combinations" of rotations. The definition of "linear combinations"

2Lcvel ACIWmi are dezrmed in wction 3.11.
3Sce wird appendix II.
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in SO(3) relates to a definition of convexity for W:Ž X SO(3). In particular, we wish

to determine whether C-space obstacles are convex. For if C-space obstacles are

convex, then we could trivially bound the number of intersection~s any straight-line

trajectory can make with any one obstacle. We present a conjecture that the

C-space obstacles are non-convex. Finally, we discuss basic topological notions for

formalizing our analysis of equivalence classes of paths.

We require some wy of forming "linear combinations" of rotations. The

requisite algebraic structure is much like a module (over the reals), except that.

the group operation cannot be commutative.'1 . The group operation is composition

of rotations. Let R(fi, 0) denote rotation about the three dimensional vector h by

angle 0. Scalar multiplication by a E R may be defined by

By subs.ii.ii.ing the (non-coinyutative) composition of rotations for the group

operation +, wc obtain a natural definition for linear combinations,

aR(fi, 0) + (1 - a4R(A', 0') =--- ao)R(, (I - a)0') (111.1)

for 0 < a < 1. R, of course, may be conveniently expressed by a unit quaternion.

Suppose Q'1 is a three-dimensional parameter space for SO(3)-that is, the

domain of a chart for rotation space. For example, Q3 might be the space of Euler

angles (see chapter 2). It is possible to define linear combinations in the parameter

space W, X Q 3. This seems unsatisfactory, since it makes the definition of linear

combination-and more disturbingly, of conve.zity-dependent upon the chosen

parameterization for SO(3). Observe thiat definition (111A.) for linear combinations

is invariant tor all parameterizations.

Open Question: Under a definition of convexity invariant for all j~arameteriza-

tions, show whether or not the C-space obstacles in V X S0(3) (and 2' X V')

" i.cmaIl that a frodule is dvii ied as fullows: If I is a coin in u tative ring wil,h idenCtity, theii A
is a module over I? if (.M, 4) is a conirnta~ive gronp, and .cid.atr inItifplic(at.1,6 (r, M) l-+ rM of
elcInC , I M il M b. r in R is LisociaLive and di.itrilutive (over -i), and if I11M = M
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are convex. Conjecture: We conjecture that C-space obstacles are non-convex.

When &2 X SI is approximated by R2 X [-7r, 7f) and embedded in D3, the cor-

responding C-space obstacles are non-convex using Euclidean linear combina-

.tions. Furthermore, in both gZ2 X S' and R3 X SO(3), each obstacle manifold

.is the intersection of a finite number of half-hype.rspaces of WR' X SO(3).

Each half-hyperspace is in turn defined via a real-valued partial function

f : R3 X SO(3) -+ R. Using partial functions, arbitrary non-convex manifolds

can be constructed. Showing that the obstacle manifolds could be represented

by means of smooth, total functions would suggest convexity. Our analysis

suggests that these functions must be partial, which in turn leads to the

conjecture that the obstacle manifolds are non-convex.

The homotopy relation (see appendix I1) partitions the function space of paths

into equivalence classes. The image of one such equivalence class [f] is the region

in C-space covered by the union of all the path images in [f]. The equivalence

classes are determined both by the structure of the underlying C-space , and

by the C-space obstacles. Intuitively, the fundamental groups in a space Y is a

topological invariant corresponding to the set of equivalence classes of paths in

Y. The group operation corresponds to path composition ("pasting"), and for two

paths f, g ;P -+ Y where f(1) g(O),

(rf',A r-. t C- [n 1_1

Sfort[,1

f gt Ig(2t - 1), for t E 1C ]

We think of f * g as the path whose first half is f and whose second half is g.

The pasting operation * is well defined on path homotopy classes:

[fI * [] = [f * ,

and exhibits groupoid properties. When an obstacle makes a hole in free-space, it

augments the fundamental group for the space by adding an infinite (cyclic) number

rSee appe(idix H1 for a review of liementary horuotopy theory and a formal delinitioi of the
ftudamiietal group.
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Figure H.2. Pastinig together of paths I and g. Some pathi in the boinotopic equivalence classes
V]1 and [9) are also shown.

of equivalence classes. (For example, by puncturing the plane at the origin 0, we

obtain the classes of paths (1) not looping around 0, (2) looping around 0 once,

(n) looping n - 1 times around 0, ... ). The topology of the underlying C-space

may be predetermined (see appendix II), but each new find-path environment

generates different path homotopy classes. We wish to infer the equivalence classes

in the fundamental group by their generators, i.e., the C-space obstacles. Since the

C-space obstacles can be constructed from the real-space obstacles, we are actually

attempting to compute path classes in C-space from the structure of real-space.
t -

In general, if free-space is connected, the image in C-space of even a single class

of paths can cover all of free-space. However, we can impose a stronger condition

which subsumes the path-class criterion. Let p be an injection of PI into C-space

which will represent some approximation of a solution path for a subproblern H.

We wish to know whether the image of p can be expressed as the union of two
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Figure Ul.3. The plane with a puncture (or obstacle) at the origin, showing paths f and g fiom
20 to 2*1. I and g are not hwootopirnlly equivalent, and hence in different equivalence classes.

nets of points, those lying in the image of one equivalence class of paths, and those

lying in C-apace obstacles bounding that image. In chapter 4, we showed how to

inter 3ct trajectories with C-surfaces in M2 X S1 and R3 X SO(3). We can intersect

p(J') with all C-surfaces, and determine the intersec•tiun points. Thesc intersection

points indicate where it penetrates C-space obstacles, and are determined from its

zero-crossings from free-space to forbidden space. A

Claim: That the image of p contains either no region or one connected region

lying within any C-space obstacles is a sufficient (but not a necessary) condition

satisfying the path-class criterion for sub-problems.

Constraint Relevance. Another issue concerns how a global algorithm can

characterize the relevant constraints for a local algorithm, and if necessary, impose

additional, artificial constraints on the problem so that irrelevant constraints in _

the initial domain will be ignored. Because of the difficulties in maximizing channel
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breadth in three dimensional channel construction, the artificial faces introduced

by the current implementation may prove too restrictive, especially ir the robot is

large or non-convex. However, the channel consg •,iction is useful for identifying the

obstacle surfaces which bound the proposed cl,, .,nel (in real space). Call this set of

faces 7rg. The C-surfaces generated by these faces may be exploited by the sliding

and intersection experts (see chapter 2). Let 711 denote the faces of the robot. These

preferred C-surfaces are identified with their generator pairs, namely

Slide = r X< vert(YK))U(air] x a FK) U(vert(h?) X FK)

The identification of good C-surfaces to slide along addresses a central issue ia

local/global integration. At prcsent, the sliding and intersection experts exploit only

local geometric structure and planning history. The channel algorithm introduces

a global criterion for selecting which C-surfaces to slide along, and for constructing

intersection manifolds. The set of C-surfaces Slide specifies an implicit volume in

configuration space which is closely related to the channel volume (in C-space ).

This volume is obtained by extending the hyperplanes containing the C-surfaces

past the obstacle boundaries until they intersect. Furthermore, Slide lies on the

boundary of' the image of the hypothesized equivalence class of paths. By choosing

these interior surfaces as candidates for the sliding and intersection experts, global

advice on constraint relevance is provided to the local C-space algorithni by the

global channel algorithm.
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Appendix IV

A Listing of Macsyma Code

In this appendix, we provide a listing of the Macsyma code to produce optimized

_.. r .rt... ure.. F.... -ofn fthe ... t, Anono of the non.irl I;nn.-Ir

forms and trigonometric quadratic forms of the type (a), ()), and (c) C-functions,

and type (a) and (b) ACF clauses for 3 >X S0(3). Using these forms, the

intersection manifolds, type (c) ACFts, and disainbiguating applicability constraints

are constructed in the manner described in the text.

We also list (in Macsyma) the resulting combined forms for the C-functions and %

ACFs. Note that the type (c) C-function is "over a page long."

Rotations are specified by means of the Macsyma functions RotatcVector(x

vector) and TransJorm(x :plane or vector). Rotations are implcIriented using

the Euler angles. However, by changing these two functions, any representation

for rotations-such as quatelirions, spherical angles, or wrist angles for a cartesian

manipulator-may bc employed. This corresponds to reparametcrizing SO(3), and

re_'ults in different charts for the level C-surfaces, intersection manifolds, and ACF

manifolds.
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I0 Display and Grind function. If OPFINIZEFLAG its TPUE then
we actually store the OPTIMIZED eApreshhon 0/

print("Setting Grind to TRUE.. .)S
Grind:Trues
Optimizelag: TRUES
/0 OPIMPREFIX: Z q/

Dlsplay..and..Grlnd(esp) :-

flock(Clabel].
if OPTIMIZE-FLAG THEN

(print(EXP).
Print(' Optinizing...-).
Eep: Optinize(E~p)).

label:Ldisp(exp),
if Grind then
(print(* Ground, becomes:

grind(exp)).
"print(" )
label~I])S

I/ Utility function. Is the expression EXP free of all the VARS (a list?) 0I

FreeOf_Vurg(Vars, lip) :m
block([freedom].

treedom:trua.
(for var in Vars unless freedom - false do

(if Not FreeOf(Var. Exp) then freedom: false)),
if Not freedom then

Print("rExp contains Major Variables. Recotrsivaly Analyze...
frsedor=)$

/6 here we define Canopical Linear Form to be simply the
expression Of the constraint as * linear function
in X. Y. and Z O/

Cononical-linear.variables: [X. Y. Z]$

Cenonical-linsar-form(Eap) :s
IsolosteN(EAp, Canonicallinear-varlables)$
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/a Brsuce Donald (SRDSOZj analyze hairy sitpressions -- 04ACSYWA
a little tit W/

/0 Anolyze 3-sLinear forms :givers the *Chief wars* in RATVARS.
generate Intermediate labels for all the coefficient~s
of these wars and return the "Simplified" bilinear form.
Recursiwely Calls ANALY1(J-BLINEARJOR1P. So that the intermediate
labels are truly "constants" relative tU' the Ral~ars 0/-

1* typically. rtssL~.~s~ht~hJ"

/0Isolate% works like ISOLATE but for M variables in alist.
an a bilinuar form 01

lsolatek(Eap. Uvais)
Slock([Save....atvars. Iform],

Save..ratVerg: raivars,*
RstVars: Nwars.

ltr:Analyza.Di inharjform(Eap).
Retatsr: Sawe...R#tvarv,
lform)l

siriple-Aralyze..Aepth: 4S

Analyzeil lnvarjorm(emp5
block([power. Cost. Rat-.Esp. Left. lose, Sum. Label].

print('finalyzimg:').
ldisp(reveal(EAp.sisnple-..nelyze-.depth)).

Left: rat.(exp). Sum: 0. 
9

for war in Ratvars do
(Power: Hipow(Latt, Var).

if paver 30 2 thee -

(lose: var'power.

trror("Warning: Not a Bilinear form because of -. lose)).
Coat: ratcoeff(Left. war. 2).

if Rot. (Coef a0) than
( orint( "The ros.Jicient of ', varZ,' Is )

Label :Oibpley-sand...grnd(Coef).
if not frge..of-.vars(ratvars,Coef)

then Label: Analyz9_8ill near-..orm(Coaf). N ...
Sum.: Sum 4 label *Var^Z. y
Left: rst(left Coef 6 (Var -Z)))).

Drlntt("MiACo terms: )
(for war2 in tAtvara do

Afor var2 In fatvare do
it var Vvar2 t~hen

(Cost: ratrotft(I-aft, var~vari. 1).
it not (Cost a 0) then

(Print.( "Thl coefficient of ". Varwapr2," is NQ

If Not Fr~ee..f-.vars(RstVsrs. Cosf)
then Label: Analyze-6iSlin&riea.orm(Covf).

Sum: Sum + label w ar, vsr2.
Left: rat(le~t -Coaf I (War 1vvar2))))).

prlint(' Lintear Terms: )
for var in Retvars do

(toef: ratcoeff(left, war, 1). V
if not (c;#1 - 0) then ;Ar

(print("The CoeffiClert Of ",VAVr, is y.

label :Di&p1ay.,aiid-q.r~n(CoeT),
If Not free-Df-vars(FatVart, Cost)

then Label: Aaye31Ier.omCtl
Sum.: Sum~ + label~rar.
Left: rat(left - Cost* VarM).

if L.,a. 0 0 thentemi
(Print(" Arid the constsnittemi )

tIsuel: Display-and-.grind(left).
wt~m: Sum~ 4 Label),

Print(" -fielidng :.Display-.a.nd...rjnd(Sum). Sumi)$
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/0 Bruce it. Donald. (BRD102) -- Pode:Msczyms '

Attem~pt to express applicability constraitts for
C-surfaces in R-3 %cross S'3

10 PRODUCTION VERSION -- i.e.. for production of L15P coos

MTETA: [phi, theta. psiji

It .(uler-..Rot.ation-.equat~ions-.looded a TRUE then "OK'

else Sat~chload (Crotate.mac]):

shorten(enp):- subst( S~sln. subut(C, ros, sap)'$

ratvars:[ sin(phi),cos(phi).sin(thtta).cos(the\,.). sin(psi),cos(psl)J;

/6 Each constraint is of the form 0/

/* vectors: *I

u(i) :- [ux~i),uyri].uzfi]);

/* Normal for plans eq Ot

"M~i :- Ernxti3,nYti.n&[i).rndtiJ];

I' Here we &Thfivie func~tions to generate the applicability constraint3.
the crouments arv In a vertex in 3-space, %which we use to

measur* distaqck ý% the plane.
v a vertex whico we insist must be ON the plane.

U a plans (4-vattor)
c the "height' of the level suri'ace in S^3.

if 0. corresponds to the maulmim boundlary
of the applicability claus'j (e6 edge-face
contact).

R3...projectiorv(Vec) :- [voc~l]. vec[2]. vocE3]]S

Type..U.,Clause(k. bA. v. ej :m
simp_.3(

(R3,...rojection(N) Rotate-.vactor(Sn))
-(R3_Projection(K) .Rotate...vectar(v))

Typti-y-0use(N. br.. w, c) :a
9loCk([N_.TMVTAi,

N..THET&,: p&,rt~transfornu(EulerInversP. 0). 1).

(R'ruptiot.ttA b;e)M-0

t~..~labusnI.al, midp(ai~a2). 0i)

-typt...a.clevsii(n1, bi. m~idp(bl~b?). cl)

ý11 l.vli~ is Just a COPMSYAIW to conitruct s Level &urface on S-3 which
is appvlicable v/
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i~XC. yr. ZC. WC are; a A t.J1C*O R~fci (ACS) ti~

.typeA.A l5iSt.

Lovul).ki. eV13

it ~l yp...e..cjause( n(iZ). w[J1), 61(pl). IOVEZj) "

Ex(VI c(t(ScOl

/0 C..S...AlSUSEI )yqCjUS ( Grp(o~j)..AC02U) t3) -(J', (J)

C_2[1]~~~~~~~ ~ ~ ~ ~ ~ ~ : 
-ecosl 

() ra),Ub:.Ub2.1Y7.O

10~~~~~~( Grgd h esls..1
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./ %rtce r. jonsld. capace constvaints in 3-lenls. - asS

V, i'~cio-trec:L. produce lisp code...
A., yc and it 4rti bflcessgr imwcras for cariponlefts of' vectors 0/

1, this aicit section :onteios tile equations furc-ufaiib

U('2 Saiii $05, tcnaS* Sp&tfi~l IplAning paP~r fur details. *f

/* lo.,d euler rotat'rDn equations
if u r.. t'tIJL.eqatosl...lode mtrue

b2 1*c (h tIho zfl( 'u tr dS (Ui. pr od r o t ;e a c>
' / ~~~~euler..rotation.QLtos.larhre)

.9a nt~tor In r)3: "i

sin(PaS6). coirpsl) 3

41' £zrl c.I' c~at)3:

10 ni vtrtd*A con .and b(J+2) oI

ni:Icr(Of¶). yc(nfl). ac(rnf1). vc(nfl)3:

P' the burmal to a far.* gJ ar. b,'

P, type a acr'?acc. rote'tZ th3 uCOParn of

R~sroctlonf~ecJ:0 fte.f 1, vecrrj. wtcE3J'J

R"L-NVI: pat(1ransform(CuierjruerQtSO.Vttj.~

InnserPr du ct..Tra%: (Rot at,..-v~rctor(&1) + bj);

A-5: ILa . DOC- (M-4 nr,..vdutut)

I* Type I Surface 0/I

t~b: A3.p~oje.tOo%)(Ngj%;

1_6 :hkb . Ivet - (W-b Xnnert.Produc-TerNI).

PType C turface (9 )

Cd~jeA: roptae..act-or(alone) -rotate.,wector(m1);

&-S: Crosc( Edge-a. Edcjo-O):N

(KSb: ILC vec (- (..c . nner..Product_.TerNi);
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p" Sloplify if Possible? '

$imp.1(E&P. war) : ivbt(.sin(var)'2 *cos(varY2Z. ORP):

Cr Sinp_3r~ tipC5

1ypeJ..S~leIS tiqb :) Sgi'(...

Frvit("

Print(' Typ-ccartae~] ") Gfin(15)



*>)Dt-. * - -M.'

P Ipt( i VUIWIEIQNS of TYPE (V, (11) AND (C) C-SURFACES VOR
JH *ThL OO NOVZRS PROSLEA. AND~ 1TiP (A) AND (9) APPLICABILITY
COKS1V.AINIS . 00iip'st of CSPACE God APFLIC Under PRODUCE for
prtoductioA' run.) 0/

C03(TIE TA)

4+(-XC(NFI)X.XZC(B.J)OC4.)ON(iiA)YCfl-YCe-YC(WF1 ))COS(PHI)

*COS( TIlET)
+i((YC(xFI)*Z-ZC(Bj)-YC( , NI))S-dTEA.I(T)-CB)x(I!COS(PHI)

eS!N(PSIT)qZ(F Zz(Jl(V)CSTtA
Z(c(wN!i~z-zC (eJ) ycN i) )CSI( PHEIA)+( ZC( I)*Y-YC(BJ) 'ZC(NFI)) 51NS(PII))

45XCN(TET)X-ZC(AI)2IC(N!1 )-SIN(AI )'YC(NFJ-CA)(FI))

((-XC(A!I)XC(NfJ)CO(PZ -XC(AI ) tC(NGJ)'SNPH)COS(TttETA)

.XC(I)'(NGJT)- STN(Al HETAN)-YC(AT )SYC(NFIJ)CO(X I.C(AI) XC(NG)SINPHI)

+( (YC(AI)OXC(NGJ)'COS(PHIT)4YC(AI )YC(NGJ)*S!N(PHI) )COS(TiHETA)
*YC(A!)OZC(NGJ)OSIN(TtHETA)-YC(A1)OYC(NGJ)OCS(PHI)+YC(AI)eXC(NG.J)*SIN(PI4I))

-YC(NGJ)OC0S(PH!l).XC(NGJ)OSIN(PHI)-ZC(NGJ)02.YC(NGJ)*Y+XC(NG3)OX
-Z((BJ)7LZC(NGJ)-YC(Bi)*YC(WGJ)-XC(BJ)-XC(NGJ)s

TyPL-.f.,CSUrf4Cnf1J

.{ (-X((AY6,4E).XC(AI))OZC(BJONE)4(XC(AIONE)-XC(AI))OZC(OJ)).Y
-(YC(.AJO~E )-XC(A ) )'YC(BJ)OZC(BJONE ).(-XC(AIONE)4XC(AI )pZC(BJ)OYC(BJONE)

t(-YC(AI)OC(A'oP )E)-ZC(AI)OYC(A!ONE))*XC(B3)N)

*(((CiIOE (4)'ý-4C(Al))'XC(BJONE)+(XC(AIONE)-XC(AT))OXC(BJ))*Z

o(-XC(AIONE)4)XC(Ai))"XC(BJ)'ZC(SJONE)
4(-YC(AI)*IC(ATQ;*E)47.C(AI)'YC(AlONE))*YC(BJONE)
4(XC(ATO~iE) -XE(AI))*ZC(BJ)QXC(SJONE)
4t(YL(A1)-ZC(AI~r4E)-ZC(A1 )'YC(AIONE))*YC(IJ))

OCOS( THETA)

*(((XC(AWONE)-XC'(A2)) VC(BJONE ).(-Xr.(AdONE).XC(AI ))IXC(B3))9$IN(PHI)

*((XC(AIC-E)-I(C(A1))-YC(BJONE).(-XL(AIONE)+XC(AI))OYC(3J))*x
*(YC(A )-ZC(I&Iot/JE)-2C(A1)'YCjAJONE ))-ZC4UJOIiE)

*(-YC(AJ )-TC.(A.11.)*'ZC(.AI)-YC(AIONE))*ZC(8J))

+(((-YC(AIO.NE)4YCIA!)),XC(BJOKE)+(YC(A1ONE)Y())C(.)*
4((YC(.IONZYC(A1')ýZC(BJONF)4týYCjt,1ONE)4YC(Al))4?C(3j))O

4(X A 7)2C (VIO'Nt7 C A X ~C(A IONE))YC (5 ONE)
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-COS(PHI)
t(((-YC(AIOME)+YC(A3))OYC(BJONE)-(YC(AIONE)-YC(A1))OYC(BJ))Z2

*(-YC(AIONE )4YC(Al ) )VC(33)OZC(BJONL)4(YC(AIOiE J-VC(Al) )ZC(BJ)OYCtIJOUE)
*(-)kt(Al )'ZC(AIOWF ).ZC(AI)*XC(AIONE))*XC(B3ONE)
4+(XC(AI)OZC(AIONE)-ZC(AI)ZXC(AIO4E))OXC(I3))
*SIN(PHI))

* COS(PSI)

.((YC(AIcrNE)-YC(AI ))OZC(BJOt4E).(-YC(AIONE ).YC(AI)p'ZC(BJ))*Y
4(-YC(AIOlJE)'YC(Al))DYC(BJ)*ZCCBJONd[)4(YC(AIONE)-YC(Al))ZC(3J)VYC(BJOUE)

* (-XC(AI)OZC(AIONE).ZC(AI)pXC(AIONE))OXC(BJONE)
*(XC(AI)-1C(AIONE)-ZC(ApZIC(AIONE))01C(BJ))
-COS(PHil)
e(((YC(AIONE).-YC(Al ))OXC(BJOIIE)+(-YC(AIONE)4ýYC(AI))1XC(BJ))*Z

*(YC(AIONE)-'VC(AI ))OXC(BJ)"ZC(BJONE)
.* (-XC(AI)-ZC(AIONE).ZC(AI)OXC(AIONE))YVC(BJONE)
4(-YC(AIONE).YC(AI))OZC(BJp*XC(BJONE)
.*(XC(AI )Z*C(AIUN[ )-ZC(AI )XC(AIONE))OYC(BJ))
OSIN(PHI )+(-YC(AIONE)+YC(A ) )OZC(SJONE)e(YC(AIONE)-YC(A ) )OZC(UIJ))

-COS(THETA)
*(((-YC(AIOIIE).YC(A ) )OXC(BJONdE).(YC(AIONE)-YC(A )')OXC(BJ))OCOS(PHI)
**((-YC(AIONE).YC(AI))-YC(SJONEj.(YC(AIONE)-YC(AI ) )YC(BJ))-SIN(PHI)
4((YC(AIONE)-YC(Al))OXC(BJONE)+(-YC(AIONE)+YC(A!))OXC(S3))*Y

e(XC(AI )*ZC(AIONE)-ZC(Al)*XC(AIONE ) )ZC(BJONE)
.+(YC(ATONE)-YC(AI) )XC(SJ)-YC(BJONE).(-YC(AIONE)+YC(AI))*YC(BJ)OXC(IJONE)
4(-XC(Al )ZC(AIONE)4ZC(AI)-XC(AIONE))2ZC(I3))
SIM(THETA)

*(((-XC(AIONE).XC(AI) )OC(SJONE).(XC(AIONE)-XC(Al))*XC(S13))*Z

*(-XCC AlONE n+XC(AI 'i *XCJBJ1OZCEBJOUEI
4(i-YC(A1 )-ZC(AIQ;;E4ZC(AI ).YC(AiON))eYC(;3OgiE) .WI
*(XC(AIONE)-IC(AI ))-ZC(3J)-XC(IJONE)
*(YC(A )*ZC(AIONE)-ZC(AX)*YC(AIOIJE))eYC(BJ))

*COS( PHI)
*(((-XC(AIONE).XC(AI))0 YC(UJONE).(XC(AIONeE)-XC(AI ))*YC(S3))*Z
4((XC(AIONE)-XC(AI))*ZC(BJONE)+(-XC(AIONE).'XC(AI))*ZC(SJ))*Y
*(-XC(AIONE).XC(AI ) )YC(SJ)IZC(BJONE ).(XC(AIONE)-XC(Al))OZC(BJ)OYC(SJONE)
*(YC(AI )*ZC(AIONE)-ZC(AI)eYC(AIONE) )*XC(UJONE)
r( -YC(AI )ZC(AIONE).ZC(AI)t YC(AIONE))*XC(BJ))
SIX(PHI))

OSIN( PSI)
*(((-ZC(AICNE).ZC(AI))'XC(IJONE).(ZC(AIONE)-ZC(AI) )*XC(BJ))*COS(PHIl)
*((-ZC(AIONE).ZC(AI))OYC(BJONE)+(ZC(AIONE)-ZC(Al))0 YC(BJ))OSIN(PHI)
*((ZC(AIONE)-ZC(AJ'))'XC(BJONE).(-ZC(AIONE).ZC(AI))*AC(b3))-Y
*((-ZC(AIONdE).LC(Al))YVC(BJONE3+(ZC(AIONE)-ZC(AI) )YC(IJ))'X
*(-XC(Al)*YC(AIONE)+YC(A!)-XC(AIONF))-ZC(BJONiE)
*(ZC(AIONE)-ZC(A ) )*XC(BJ)*YC(BJONE )'(-ZC(AIONE).ZC(Al) )YC(U3)EXC(S3ONE)
*(XC(AI)OYC(AIONE)-YC(AI)-XC(AIONE) )ZC(SJ))
-COS( THETA)

+((((lC(AIONE)-ZC(AI)).YC(BJONE)*(-ZC(AIONE).ZC(AI))OYC(uJ))*Z
+((-ZCtAIONE ).ZC(AI ))-ZC(8JONE )+(ZC(AIONE)-ZC(AI ) )ZC(BJ))TY
*(ZC(AIONE)-ZC(AI ) )YC(BJ)-ZC(BJONE).( -ZC(AIONE)+ZC(AI))OZC(BJ)OYC(SJONE)
*(-XC(A )-YC(AIONE).YC(AI )-C(AIONE ) )XC(SJONE)
*(XC(AJ )'TC(AIONE)-YC(AI )XC(AIONE))*XC(B3))
*COS( PHI)
*( ((-ZC(AIONE).ZCiAI ))*IC(SJONE )e(ZC(AIONE)-ZC(AI ))OXC(63))*Z
*((ZC(AIONE)-ZC(A ))-ZC{DJONE )+(-ZC(AJONE).ZC(AI))OZC(BJ))1X
*(-ZC(AIONE ).ZC(AI ))OXC(DJ)1ZC(BJONE)
*(-XC(A )-YC(AIONE )4YC(AI)OXC(AICNE))*YC(B3ONE)
+(ZC(AIONE)-ZC(AI ) )ZC(SJ)-XC(IJONE)
*(XC(Al pYC(AIONE)-YC(AI)*XC(AIONE))OYC(BJ))
OSIN(PHI)i(ZC(AIONE)-ZC(Al))OZC(BJONE)+(-ZC(AIONE).ZC(AI))SZC(RJ))

OSIM(THETA)S

10 Herer are the Applicabilit~y constraints 0/
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Typ...A.Aclaus.e1J

(((IC(U)-XC(V))*XC(N)OCOS(PwI )*{YC(U) -YC(V))'XC(N)'Sl3ý(PHJ)).COS(THETA)
.*f-ZC(U)+ZC(v))ScC(N)sSIN(1HETA).t(yc(u)-yc(v) )Oyt(N)*COS(pI)
.+(-XC(U)+XC(V))OYC(i)OS1N(PNI))
-COS(PSI)
*(((-XC(U)4XC(V))SYC(N)sCOS(PH1)4(-YC(U).YC(V))eYC(N).Sxw(PpjJ)).COS(THETA)
*(ZC(U)-ZC(V) )YC(N)OS1N(1HEIA).(VC-%U)-VC(V) )ZC(N)-COS(PHI)
+(-XC(U)4XC(V) )'XC(h)'PSXN(PHJ))
*SIN(PS1).(ZC(U)-ZC(V))*ZC(N)OCOS(THETA)

*((XC(U)-XC(V))*ZC(N)COS(PMI).(VC(U)-YC(V))OZC(N)wSIu(PHI)).S1N(1HETA3..LEVELS

T4Fp*..S..Aclause[13

COS(IHE TA)
4(ZC(Ii).XC(V)-ZC(NWyXC(U)).SIN(THETA)4(-YC(N).YC(V)+YC(N)OYC(U)).(QS(PHI)
*(XC(E)*YC(V)-XC(?i)*YC(U))'Szw(PMI))
OCOS(PSI)
*(((XC(N)*YC(V)-XC(N)*YC(U))eCOS(PI4I)+(YC(N)eYC(V)-YC(N)eYC(U))OSIN(PHI))

OC05( THETA)
.(-zc(w)*yr(v).zc(N)'yc(u) )SIN(THETA)+(-YC(N)*XC(V,%+YC(N).XC(U) )Cos(PIII)
.(KC(W)'XC(V)-XC(N)*XC(U))'SIN(P141))
*SIN(PSI ).(-ZC(N)OZC(V).ZC(N)*ZC(U)).COS(THiETA)
+( (-XC(N)*ZC( V)+XC(N)*ZC(U))OCOS(PhI)i (-YC-(N)OZC( V)'eYC(N)*ZC(U) )5IN(PHII))
*SIN(THETA)-LEVELS
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(Bruce Donald. Here we Express a Constraint (C-surface or
Act) in Canonical Linear form and Canonical Trig form..

Given a COINSTRAJNl which ii either a
C-surface or an Aff (applicability clause function)
and a variable (VAR) we solve ror the variable) Of

Loa#..up():& /* load necessary filesI
bloCk(EJ. /* for solving 0/

if ALL-.DUrS.LOAOED TAUF then OK'
else batchloaC¶(isrd5:[brd.prod~defabc.mac").

batchload([intabc.&acJ).
batchload("usrlS :[brd.prodjanalyze2 .mac"),

sin(phi), cos(phl), sin( theta). CoS(theta).
Sin(Psi). Cos(Psi) J.

Angles: [Phi. Psi, theta])$

Load..uý OS

/0 give us an "explicit" tangent space 0/

s(var) :* sin(var)S
c(var) :a coz(var)S
*uild..Manifeld()S /0 Rebuild Manifold 0/

solve....or..ngl*(9xp,vsr):& to Solve for COS(var) I/
block([Rats, R2. A2. RJ.-

rats: ratwars.
Ratvara: [c(var). s(var)J.
priat'"Simplifyinq. .. )
RI: Isolatell(exq. RatvaraL.
Print('Liisinstirng '. s(var)...)
R2: Elimlinatefl](RI. Var).
Ldisp(R2),
Print("Solving for *. t(var),' .. )...
R3: solv*(ft2.c(vAr)).
display...and-.grind(R3).
ratvars rota,
r3)$

Solvsmjor..(Enp. Xvar):. to Solve for Any Var 0
Bloek(CRats, rl. 02].

Rats: ratvara.
Rstvars: (Xvar],
print('Simpllfyinq...)
k2: isolateu(tap. Ratvarsj.
print(" Solving for '. Xvar,...')
r2: solve(Ri. Xwer).
Display...and...grind(rZ).
ratvans: rats,
R2)$

Solve..tosto:w /0 Test the Solution Routines 0/
block((J.

grind(solve-.test),
grind~false,
Solve-for..englia(CaI, Phi).

to Solve a type (a) surface for PSI an~d Y 0/

ASI: Sintos-to-.CS(type..ASSurraLirlJ).

Solvie..for..angle(AS1. Psi).
Solve-for-X(ASI. 1).

to Solve a type (3) surface for PSI and Y 0/
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OSI Sicst-stp-~sraol)

Solvejfor..angle(BS1, Psi).
Solve-for-.X(SSI. y1),

noti1fy()

10 CExipress expresses things Canonically I/

CEprets(Exp. Typti)
ftock((J.

If Type - C-.Surfa~e then
(Print(-Canonical Linear Form..

CanonicaLl-linear...form(Itxp)).
Print("Solving for Age.
for Var in Angles do

(Solve-for-.angle(Exp. Var)))S

/0 here we Do the Expression. Now to get Ground forms. just change GRIND. etc. 0/

DO..C~xprexsO():v
SLOCk([J,

Grind- False. /0 Here It is.. 0
kill(labels).
Crxpress(type_.A_.Csurfacef1]. *C..Surfac@).
CExpress(type...U..Csurface[1J. *C...Surfseq).
CExpress(type-C-.Csurface~2J. 'C...Surface).
CExpress(type..A_,AclausefIJ. 'ACF).
CEApress(type..B_.AClauselj3, 'ACf))5
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I *- 140ciyna -OT BROSO! (Buc& R. Donald).
Save iftevrsoctions or c..surfaces and A..clauset.
for the 6dof movers problesi. 91

Angles: Itheta. Phi. Psi]S

/0 allow some simplification into C and S terms 0/

Sincos...to.Cs (gap) :N
Block([[],

1: Gap.
for Var in Angles Do
U: r~tsubsl(stvarJ. sin(vor),

ratsutbst(c~varJ. cos(var), E)).
rat(E))s

/I permit ths inverse Ot

CS..to..SinCos (gap) :0
Ilock([E],

E: 0ap,
for Var in Angles Do
F: ratsubst(sln(var). s~ver3.

ratsubst(cos(var).c[verJ. E)).

/N The Tangent Space Manifold 0/

/ 0 DOit yourself. PRI! batchlcsd((dsiabc~asc. 'usrd$*. brd3)

/9 Short form functions 0/

s(var) a~ srvsrJ
c(var) :t [vsr]S

/0 SImplify if possible? use the slc~var3 form though. G/ FX. C~ri

Simp....(Exp. Var) :a ratsubtt(1. s(var)^2 + c(var),2, eap)Si

$imp....( Simp-..( Simp-%.(Eap. Phi). Theta). Psi))$

m~snifold(var):e s(ver)-2 + c(vae)^2 - IS

Block([].
Wanf theta): Nianifold( theta).
1M6M[Phi) :manifold(phi).
Manfral) : Manifold(psi))$

luild-manifoll()5

/0 fliminste~lJ eliminates the dual trig term. S1I is parameterized by
one variable (ver). Eliminates SIN(VAR) from 1IP 0/

elimihsatetijeap. var) :0
blockj[3.

Templ; rat(psrt(
eliminste([exp. Man~varj). (s(verf),)I))

PElivinate12] calls eliminate~l) twice, and eliminates the resultants.
Hence the intersection of two level surfaces on S-3 is
parameterized by a one paran,. family. Eliminates Sin/corn Varl/VarZ

fromu Eap. 0/

IJSECS-FORM: TrueS

eliminatqE2J(expl. sap?. varI. ver2) :
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block( [RI. 92. R3, R4. R5. r6. /* TemD results I/
LrI. Wr. Wl. Lr4, Lrb. lrG]. /0 Tneir Labels *

Rtatyars: [it. 'Y. 2.
s(phi). C(phi). 9( theta). c(thetl),

if UseS-FORM4 thin

exp2: SinCcs_.To..CS(exp2)).
print("Eliminate '.s(vsim)." from eApresslon 1:").
rl: elinlnatefl)(expl. varl),
LrI:ldisp(rI). ,~al, fo arsin2)

print("-Eliminate "svr)'fo xrno :)
r2: elininatq(lJ(exp2. wart).
Lr2:ldisp(rZ).

print("Eliminate .c(varl)." from ".append(LR. LR2)).
r3: rat(eliminate(Erl,r2J.fc(varl)]))).
Lr3: Ldisp(R3).
print(-Eliminate ".s(var2).' from %Wr').
R4: eliminirate(IJ(P3. var2).
Lr4: Lvisp(R4).

Print(" Solve ". Ir4.' for ". c(var2)).
Rb: rat(Solve(R4. c(var2))).
Lrfi: Ldisp(RB).
prlnt("Finally. solve 0.Lrl.' for %c(varl)).
R6: rat(solve(RI, c(varl))),
Lrb: ldisp(Rb).

Append(lr2,lr2.lr3.lr4.lr5,lrO))5

Teut():-
alimimnste[2J(type..A.AclauseflJ.

WypO-A..Aci auset 2].

PSI)S
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I' *-mods: macsyms
(file to Ru~n Production of 3d Spae. equations.
Bruce A. Donald. MIT Al LAS ) 9/

Is Define the type ABC constraints. 0/

Dot ine...ABCO:w
block([].

betch( USRDS:[brd p rod Csp ace .ac*))

/0 Define the appllicability Constraints e/

Detins-.Applico:s
Block(EJ.

Betch("USRDS:[brd.prodJAppllc~mmc"))S

/0 Weine loth 0/

Produce-.Defs():o
blockffJ.

Writefile("usrdS:(brd.prodJProduce.lop"),
Setch("usrdS:[brd.prodJRotete..ac*).
Define-ASCO.
Defin@_.Appl ico.
Closet lle(),
Notify())$

Cold-.Restartfl:-
block(E].

lbatciloea("sys~logln:utill.mac").
batchi oed( usrdS fbrd prod~produce .uec).
Produce-defso)$

1w Here's a function to save labels for you. 0

Ssvee.labels(fils):*
blockflJ.

?Open..output-.file(file).
for Label in Append( reverse(labels(e)). revorse(lebels(d)))4
DO
(?rind-.TO..FILE(Lebel). Print(Label)).

?Close..Output...fil9( ))S

/6 Produce the EXPRESS file. parsing Into solutions end coefficients. 0/

Produce-Express():*
block([].

write! ile("usrdS :Ebrd.prod)Express~logý).

DO-.CExpressso.
Print(* Saving Labels in LSP file ... 1).
Seve..Lebels('USRDS:[brd.prod]EXPRESS.LSP"). ,
Notify( ))$

/0 this function produces EVERYTHING. 0/

Produce-.ALLO:w kI
BLOCK([).

Produce...Dfs().
ALL_.DEFS_.LOAOED: TRUE,
Kill(WfiI NgJ, Al. Alone, *j. $Jon*).
Type-A-Csurface~1J A-5.
Typm...S.Csurfacotl]: 8-6
TypeC_.Csurfsce[lJ: C-...S
Produce-express().
closeflleo)S$
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/0 Bruee R. Donald (SBiDOOZ) Euler Rotat'ions for Macsyne~. SOeO' MACSY14A--
Paul, p 45 0/

CWangle:0 cos(angle)s
sgangle):. l- nl)

astriA(
C( Psil- -$(Psi), 0.0J

(s(pli). c(psl). 0. 0].
~ 0; . 1. 0].c 0. 0. 0. 1]);

E c(thuta). 0. s(thate).0.
E a. i. U. 03.
[-$(that&), 0, t(theta). 0].
E 0. 0. 0. 1]):

Not...Z_.Phi: Matrix(
(C(ohi). -9(phi). 0. 0].
$ (phi). C(phi). 0. 0].

E 0. a. 1- 03.
E 0. 0. 0. 23):

Euler-mjatrix: got..LPhi. Euler..tomp:

hoMogenlizv(X):w [xr1J. [Z]. A[3]. 2]:
IUn~omogeniz*(X) :[ x[1]/A44. A[2J/xt4J. A[S]/x44j;

Aot:::...:ctor(X); UnHomoganhze( Euler..Matrix . oniogeniag(X))

Cross(A.U) :a
E(&[2]0b[31 a[3]0b[2).

(a[2J-b[212 a[12'bES)).

/0 SImplify it possible? a/

Slerp-..(Exp. Veil :- retsubst(1. sin(var)2 * cos(var)2Z. exp);
Iimp..3(EAD) :a*aRt(

Slmp-..( Simpj..( Sinp_.I(Exp. Phi). Theta). Pai));

1* General Transform~ation function. A 4-vector is assumned to be a plans.
and a 3-vector a 3-vector, hence the 3-rector U~ ROTATED and a 4-vector
pane s. als *le. ,tataed ... See i PAU 0

Transtora(Transfor-matlon...satria. 1)
Block([Hom. Trans~ans].
Ana: "Whoopsl'.
If length(x) a 4 then 4

Ana: a .Transformation-matrix

Else
if length (x) * 3 then I
Ans:Unhom~ogenize(Transformetion-.mstrix . Homogenize M))

Else Print(" But '.x.' Must be a 3-voctor or 4-VectorlP).
Ana);

/I Now Compute Inverse of the Euler Transformation 01

E..Adj: simp-.3(rat (adjoint( Evler...atriA))); U
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